Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Curr Opin Lipidol ; 23(6): 511-7, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22907332

RESUMEN

PURPOSE OF REVIEW: There are now ample data that demonstrate that inhibition of PCSK9 (proprotein convertase subtilisin/kexin type 9) can safely lower LDL cholesterol synergistically with statins. Considering that PCSK9 was first identified less than a decade ago, the last few years have shown rapid and remarkable advancements in our understanding and knowledge of the structure and function of PCSK9. RECENT FINDINGS: Therapeutic developments have not lagged far behind with some monoclonal antibodies currently entering phase III trials. Of the many approaches to PCSK9 inhibition, these compounds are the furthest advanced in their clinical development while small molecule oral inhibitors seem a distant prospect. SUMMARY: This review summarizes the discovery and history of PCSK9 and in particular its mode of action as an inhibitor of the LDL receptor. It also recapitulates key studies that have demonstrated the potential of inhibiting PCSK9 to further decrease LDL-cholesterol levels safely and synergistically with statins. Finally, we review the strategies that are currently in development to inhibit PCSK9, with a special emphasis on the spectacular results from recent phase-I and phase-II clinical trials.


Asunto(s)
Serina Endopeptidasas/metabolismo , Inhibidores de Serina Proteinasa/farmacología , Animales , Ensayos Clínicos como Asunto , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Lisosomas/enzimología , Chaperonas Moleculares/antagonistas & inhibidores , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Inhibidores de Serina Proteinasa/uso terapéutico
2.
J Gastroenterol Hepatol ; 18(11): 1272-82, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14535984

RESUMEN

BACKGROUND AND AIM: The methionine choline-deficient (MCD) diet leads to steatohepatitis in rodents. The aim of the present study was to investigate species, strain and sex differences in this nutritional model of non-alcoholic steatohepatitis (NASH). METHODS: Male and female Wistar, Long-Evans and Sprague-Dawley rats, and C57/BL6 mice (n = 6 per group) were fed a MCD diet for 4 weeks. Control groups received an identical diet supplemented with choline bitartrate (0.2% w/w) and methionine (0.3% w/w). Liver pathology (steatosis and inflammation) and ultrastructure, liver lipid profile (total lipids, triglycerides, lipid peroxidation products), liver : body mass ratios and serum alanine aminotransferase (ALT) levels were compared between these groups. RESULTS: The MCD diet-fed male rats developed greater steatosis (P < 0.001), had higher liver lipid content (P < 0.05) and had higher serum ALT levels (P < 0.005) than did female rats. Wistar rats (both sexes) had higher liver lipid levels (P < 0.05), serum ALT levels (P < 0.05), and liver mass : body mass ratios (P < 0.025) than did Long-Evans and Sprague-Dawley rats. In female groups, Wistar rats showed greater fatty change than did the other two strains (P < 0.05). All rats fed the MCD diet developed hepatic steatosis, but necrosis and inflammation were minor features and fibrosis was absent. Compared with Wistar rats, male C57/BL6 mice showed a marked increase in inflammatory foci (P < 0.001), end products of lipid peroxidation (free thiobarbituric acid reactive substances) (P < 0.005), and mitochondrial injury, while showing less steatosis (P < 0.005), lower hepatic triglyceride levels, (P < 0.005) and lower early lipid peroxidation products (conjugated dienes and lipid hydroperoxides; P < 0.005 and P < 0.01, respectively). CONCLUSIONS: The Wistar strain and the male sex are associated with the greatest degree of steatosis in rats subjected to the MCD diet. Of the groups studied, male C57/BL6 mice develop the most inflammation and necrosis, lipid peroxidation, and ultrastructural injury, and best approximate the histological features of NASH.


Asunto(s)
Modelos Animales de Enfermedad , Hígado Graso/etiología , Desnutrición/complicaciones , Alanina Transaminasa/sangre , Animales , Deficiencia de Colina/complicaciones , Hígado Graso/genética , Hígado Graso/patología , Femenino , Peroxidación de Lípido , Hígado/metabolismo , Masculino , Metionina/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley , Ratas Wistar , Factores Sexuales , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA