Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Cogn Neurosci ; 35(12): 2067-2088, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37713672

RESUMEN

The capacity for language is a defining property of our species, yet despite decades of research, evidence on its neural basis is still mixed and a generalized consensus is difficult to achieve. We suggest that this is partly caused by researchers defining "language" in different ways, with focus on a wide range of phenomena, properties, and levels of investigation. Accordingly, there is very little agreement among cognitive neuroscientists of language on the operationalization of fundamental concepts to be investigated in neuroscientific experiments. Here, we review chains of derivation in the cognitive neuroscience of language, focusing on how the hypothesis under consideration is defined by a combination of theoretical and methodological assumptions. We first attempt to disentangle the complex relationship between linguistics, psychology, and neuroscience in the field. Next, we focus on how conclusions that can be drawn from any experiment are inherently constrained by auxiliary assumptions, both theoretical and methodological, on which the validity of conclusions drawn rests. These issues are discussed in the context of classical experimental manipulations as well as study designs that employ novel approaches such as naturalistic stimuli and computational modeling. We conclude by proposing that a highly interdisciplinary field such as the cognitive neuroscience of language requires researchers to form explicit statements concerning the theoretical definitions, methodological choices, and other constraining factors involved in their work.


Asunto(s)
Neurociencia Cognitiva , Neurociencias , Humanos , Cognición , Lenguaje , Lingüística
2.
Hum Brain Mapp ; 40(9): 2736-2746, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30854728

RESUMEN

Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique able to induce plasticity phenomena. Although tDCS application has been spreading over a variety of neuroscience domains, the mechanisms by which the stimulation acts are largely unknown. We investigated tDCS effects on cortical gamma synchrony, which is a crucial player in cortical function. We performed a randomized, sham-controlled, double-blind study on healthy subjects, combining tDCS and magnetoencephalography. By driving brain activity via 40 Hz auditory stimulation during magnetoencephalography, we experimentally tuned cortical gamma synchrony and measured it before and after bilateral tDCS of the primary sensory-motor hand regions (anode left, cathode right). We demonstrated that the stimulation induces a remarkable decrease of gamma synchrony (13 out of 15 subjects), as measured by gamma phase at 40 Hz. tDCS has strong remote effects, as the cortical region mostly affected was located far away from the stimulation site and covered a large area of the right centro-temporal cortex. No significant differences between stimulations were found for baseline gamma synchrony, as well as early transient auditory responses. This suggests a specific tDCS effect on externally driven gamma synchronization. This study sheds new light on the effect of tDCS on cortical function showing that the net effect of the stimulation on cortical gamma synchronization is an inhibition.


Asunto(s)
Percepción Auditiva/fisiología , Sincronización Cortical/fisiología , Ritmo Gamma/fisiología , Corteza Sensoriomotora/fisiología , Estimulación Transcraneal de Corriente Directa , Adulto , Método Doble Ciego , Femenino , Humanos , Imagen por Resonancia Magnética , Magnetoencefalografía , Masculino
3.
Neural Plast ; 2018: 2782804, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29593782

RESUMEN

Transcranial direct current stimulation (tDCS) can noninvasively induce brain plasticity, and it is potentially useful to treat patients affected by neurological conditions. However, little is known about tDCS effects on resting-state brain networks, which are largely involved in brain physiological functions and in diseases. In this randomized, sham-controlled, double-blind study on healthy subjects, we have assessed the effect of bilateral tDCS applied over the sensorimotor cortices on brain and network activity using a whole-head magnetoencephalography system. Bilateral tDCS, with the cathode (-) centered over C4 and the anode (+) centered over C3, reshapes brain networks in a nonfocal fashion. Compared to sham stimulation, tDCS reduces left frontal alpha, beta, and gamma power and increases global connectivity, especially in delta, alpha, beta, and gamma frequencies. The increase of connectivity is consistent across bands and widespread. These results shed new light on the effects of tDCS and may be of help in personalizing treatments in neurological disorders.


Asunto(s)
Ondas Encefálicas/fisiología , Magnetoencefalografía/métodos , Corteza Motora/fisiología , Red Nerviosa/fisiología , Descanso/fisiología , Estimulación Transcraneal de Corriente Directa/métodos , Adulto , Método Doble Ciego , Femenino , Humanos , Masculino , Corteza Motora/diagnóstico por imagen , Red Nerviosa/diagnóstico por imagen
4.
Neurosci Biobehav Rev ; 142: 104881, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36210580

RESUMEN

In recent years a growing number of studies on syntactic processing has employed basic two-word constructions (e.g., "the tree") to characterize the fundamental aspects of linguistic composition. This large body of evidence allows, for the first time, to closely examine which cognitive processes and neural substrates support the combination of two syntactic units into a more complex one, mirroring the nature of combinatory operations described in theoretical linguistics. The present review comprehensively examines behavioral, neuroimaging and neurostimulation studies investigating basic syntactic composition, covering more than forty years of psycho- and neuro-linguistic research. Across several paradigms, four key features of syntactic composition have emerged: (1) the rule-based and (2) automatic nature of the combinatorial process, (3) a central role of Broca's area and the posterior temporal lobe in representing and combining syntactic features, and (4) the reliance on efficient bottom-up integration rather than top-down prediction.


Asunto(s)
Mapeo Encefálico , Lenguaje , Humanos , Imagen por Resonancia Magnética/métodos , Lingüística , Neuroimagen
5.
Front Psychol ; 13: 968836, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36619118

RESUMEN

Categorical predictions have been proposed as the key mechanism supporting the fast pace of syntactic composition in language. Accordingly, grammar-based expectations are formed-e.g., the determiner "a" triggers the prediction for a noun-and facilitate the analysis of incoming syntactic information, which is then checked against a single or few other word categories. Previous functional neuroimaging studies point towards Broca's area in the left inferior frontal gyrus (IFG) as one fundamental cortical region involved in categorical prediction during incremental language processing. Causal evidence for this hypothesis is however still missing. In this study, we combined Electroencephalography (EEG) and Transcranial Magnetic Stimulation (TMS) to test whether Broca's area is functionally relevant in predictive mechanisms for language. We transiently perturbed Broca's area during the first word in a two-word construction, while simultaneously measuring the Event-Related Potential (ERP) correlates of syntactic composition. We reasoned that if Broca's area is involved in predictive mechanisms for syntax, disruptive TMS during the first word would mitigate the difference in the ERP responses for predicted and unpredicted categories in basic two-word constructions. Contrary to this hypothesis, perturbation of Broca's area at the predictive stage did not affect the ERP correlates of basic composition. The correlation strength between the electrical field induced by TMS and the ERP responses further confirmed this pattern. We discuss the present results considering an alternative account of the role of Broca's area in syntactic composition, namely the bottom-up integration of words into constituents, and of compensatory mechanisms within the language predictive network.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA