Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nat Commun ; 10(1): 3312, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31346174

RESUMEN

Compromised function of insulin-secreting pancreatic ß cells is central to the development and progression of Type 2 Diabetes (T2D). However, the mechanisms underlying ß cell failure remain incompletely understood. Here, we report that metabolic stress markedly enhances macroautophagy-independent lysosomal degradation of nascent insulin granules. In different model systems of diabetes including of human origin, stress-induced nascent granule degradation (SINGD) contributes to loss of insulin along with mammalian/mechanistic Target of Rapamycin (mTOR)-dependent suppression of macroautophagy. Expression of Protein Kinase D (PKD), a negative regulator of SINGD, is reduced in diabetic ß cells. Pharmacological activation of PKD counters SINGD and delays the onset of T2D. Conversely, inhibition of PKD exacerbates SINGD, mitigates insulin secretion and accelerates diabetes. Finally, reduced levels of lysosomal tetraspanin CD63 prevent SINGD, leading to increased insulin secretion. Overall, our findings implicate aberrant SINGD in the pathogenesis of diabetes and suggest new therapeutic strategies to prevent ß cell failure.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Lisosomas/metabolismo , Animales , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatología , Humanos , Insulina/química , Secreción de Insulina , Células Secretoras de Insulina/citología , Macroautofagia , Masculino , Ratones Endogámicos C57BL , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo
2.
AAPS J ; 6(4): e30, 2004 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-15760095

RESUMEN

The presence of halogens within the classical cannabinoid structure leads to large variations in the compounds' potencies and affinities for the CB1 receptors. To explore the structure activity relationships within this class of analogs we have used a series of halogen-substituted (-)-Delta8-tetrahydrocannabinol analogs and compared their affinities for the CB1 cannabinoid receptor. Our results indicate that halogen substitution at the end-carbon of the side chain leads to an enhancement in affinity with the bulkier halogens (Br, I) producing the largest effects. Conversely, 2-iodo substitution on the phenolic ring leads to a 2-fold reduction in affinity while iodo-substitution in the C1'-position of the side chain lowers the compound's affinity for CB1 by more than 8-fold. The pharmacophoric requirements resulting from halogen-substitution are explored using computer modeling methods.


Asunto(s)
Dronabinol/análogos & derivados , Halógenos/química , Receptor Cannabinoide CB1/metabolismo , Animales , Dronabinol/química , Dronabinol/metabolismo , Ligandos , Modelos Moleculares , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA