Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Soft Matter ; 10(45): 9059-64, 2014 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-25300931

RESUMEN

By means of multiscale hierarchical modeling we study the real time evolution of low-molecular-weight polystyrene, below the glass transition temperature, in contact with its solvent, toluene. We observe two concurrent phenomena taking place: (1) the solvent diffuses into the polymer by a Case II mechanism, leading to osmotic driven swelling and progressive chain dilution (inside-out mechanism); (2) polymer chains are solvated, detach from the interface and move into the solvent before the film is completely swollen (outside-in mechanism). From our simulations we conclude that, below the entanglement length, a thin swollen layer, also observed in previous experiments, forms almost instantaneously, which allows for the outside-in mechanism to start a few tens of nanoseconds after the polymer-solvent initial contact. After this initial transient time the two mechanisms are concurrent. We furthermore observe that the presence of the solvent significantly enhances the mobility of the polymer chains of the surface layer, but only in the direction parallel to the interface.

2.
J Chem Phys ; 141(22): 224109, 2014 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-25494734

RESUMEN

Molecular simulations of soft matter systems have been performed in recent years using a variety of systematically coarse-grained models. With these models, structural or thermodynamic properties can be quite accurately represented while the prediction of dynamic properties remains difficult, especially for multi-component systems. In this work, we use constraint molecular dynamics simulations for calculating dissipative pair forces which are used together with conditional reversible work (CRW) conservative forces in dissipative particle dynamics (DPD) simulations. The combined CRW-DPD approach aims to extend the representability of CRW models to dynamic properties and uses a bottom-up approach. Dissipative pair forces are derived from fluctuations of the direct atomistic forces between mapped groups. The conservative CRW potential is obtained from a similar series of constraint dynamics simulations and represents the reversible work performed to couple the direct atomistic interactions between the mapped atom groups. Neopentane, tetrachloromethane, cyclohexane, and n-hexane have been considered as model systems. These molecular liquids are simulated with atomistic molecular dynamics, coarse-grained molecular dynamics, and DPD. We find that the CRW-DPD models reproduce the liquid structure and diffusive dynamics of the liquid systems in reasonable agreement with the atomistic models when using single-site mapping schemes with beads containing five or six heavy atoms. For a two-site representation of n-hexane (3 carbons per bead), time scale separation can no longer be assumed and the DPD approach consequently fails to reproduce the atomistic dynamics.

3.
Langmuir ; 29(5): 1457-65, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23320893

RESUMEN

Although experimental and theoretical studies have addressed the question of the wetting properties of graphene, the actual value of the contact angle of water on an isolated graphene monolayer remains unknown. While recent experimental literature indicates that the contact angle of water on graphite is in the range 90-95°, it has been suggested that the contact angle on graphene may either be as high as 127° or moderately enhanced in comparison with graphite. With the support of classical molecular dynamics simulations using empirical force-fields, we develop an argumentation to show that the value of 127° is an unrealistic estimate and that a value of the order of 95-100° should be expected. Our study establishes a connection between the variation of the work of adhesion of water on graphene-based surfaces and the interaction potential between individual water molecules and these surfaces. We show that a variation of the contact angle from 90° on graphite to 127° on graphene would imply that both of the first two carbon layers of graphite contribute approximately the same interaction energy with water. Such a situation is incompatible with the short-range nature of the interaction between water and this substrate. We also show that the interaction potential energy between water and the graphene-based substrates is the main contribution to the work of adhesion of water with a relative magnitude that is independent of the number of graphene layers. We introduce the idea that the remaining contribution is entropic in nature and is connected to the fluctuations in the water-substrate interaction energy.


Asunto(s)
Grafito/química , Agua/química , Simulación de Dinámica Molecular , Propiedades de Superficie
4.
Phys Chem Chem Phys ; 13(22): 10468-74, 2011 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-21541381

RESUMEN

Systematically coarse grained models for complex fluids usually lack chemical and thermodynamic transferability. Efforts to improve transferability require the development of effective potentials with unequivocal physical significance. In this paper, we introduce conditional reversible work (CRW) potentials that describe nonbonded interactions in coarse grained models at the pair level. The method used to obtain these potentials is straightforward to implement, can be readily extended to compute hydration contributions in implicit-solvent potentials, and is easy to automize. As a first illustration of the method, we present CRW potentials for 3-site models of hexane and toluene. The temperature-transferability of the liquid phase density obtained with these potentials has been investigated, and a comparison has been made with effective potentials obtained by the iterative Boltzmann inversion method.

5.
Nat Mater ; 8(5): 421-6, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19363476

RESUMEN

Discotic liquid crystals are a promising class of materials for molecular electronics thanks to their self-organization and charge transporting properties. The best discotics so far are built around the coronene unit and possess six-fold symmetry. In the discotic phase six-fold-symmetric molecules stack with an average twist of 30 degrees, whereas the angle that would lead to the greatest electronic coupling is 60 degrees. Here, a molecule with three-fold symmetry and alternating hydrophilic/hydrophobic side chains is synthesized and X-ray scattering is used to prove the formation of the desired helical microstructure. Time-resolved microwave-conductivity measurements show that the material has indeed a very high mobility, 0.2 cm(2) V(-1) s(-1). The assemblies of molecules are simulated using molecular dynamics, confirming the model deduced from X-ray scattering. The simulated structures, together with quantum-chemical techniques, prove that mobility is still limited by structural defects and that a defect-free assembly could lead to mobilities in excess of 10 cm(2) V(-1) s(-1).

6.
J Am Chem Soc ; 131(32): 11426-32, 2009 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-19630392

RESUMEN

Discotic mesophases are known for their ability to self-assemble into columnar structures and can serve as semiconducting molecular wires. Charge carrier mobility along these wires strongly depends on molecular packing, which is controlled by intermolecular interactions. By combining wide-angle X-ray scattering experiments with molecular dynamics simulations, we elucidate packing motifs of a perylene tetracarboxdiimide derivative, a task which is hard to achieve by using a single experimental or theoretical technique. We then relate the charge mobility to the molecular arrangement, both by pulse-radiolysis time-resolved microwave conductivity experiments and simulations based on the non-adiabatic Marcus charge transfer theory. Our results indicate that the helical molecular arrangement with the 45 degrees twist angle between the neighboring molecules favors hole transport in a compound normally considered as an n-type semiconductor. Statistical analysis shows that the transport is strongly suppressed by structural defects. By linking molecular packing and mobility, we eventually provide a pathway to the rational design of perylenediimide derivatives with high charge mobilities.

7.
J Chem Phys ; 129(9): 094506, 2008 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-19044876

RESUMEN

Combining atomistic molecular dynamic simulations, Marcus-Hush theory description of charge transport rates, and master equation description of charge dynamics, we correlate the temperature-driven change of the mesophase structure with the change of charge carrier mobilities in columnar phases of hexabenzocoronene derivatives. The time dependence of fluctuations in transfer integrals shows that static disorder is predominant in determining charge transport characteristics. Both site energies and transfer integrals are distributed because of disorder in the molecular arrangement. It is shown that the contributions to the site energies from polarization and electrostatic effects are of opposite sign for positive charges. We look at three mesophases of hexabenzocoronene: herringbone, discotic, and columnar disordered. All results are compared to time resolved microwave conductivity data and show excellent agreement with no fitting parameters.


Asunto(s)
Simulación por Computador , Modelos Químicos , Compuestos Policíclicos/química , Teoría Cuántica , Algoritmos , Cristales Líquidos/química , Microondas , Estructura Molecular , Movimiento (Física) , Transición de Fase , Rotación , Electricidad Estática , Temperatura , Factores de Tiempo
8.
J Chem Phys ; 129(9): 094505, 2008 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-19044875

RESUMEN

Using atomistic molecular dynamic simulations we study the transitions between solid herringbone and liquid crystalline hexagonal mesophases of discotic liquid crystals formed by hexabenzocoronene derivatives. Combining a united atom representation for the side chains with the fully atomistic description of the core, we study the effect of side chain substitution on the transition temperatures as well as molecular ordering in the mesophases. Our study rationalizes the differences in charge carrier mobilities in the herringbone and hexagonal mesophases, which is predominantly due to the better rotational register of the neighboring molecules.


Asunto(s)
Simulación por Computador , Modelos Químicos , Compuestos Policíclicos/química , Teoría Cuántica , Cristales Líquidos/química , Estructura Molecular , Método de Montecarlo , Transición de Fase , Rotación , Temperatura
9.
J Phys Chem B ; 110(11): 5253-61, 2006 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-16539455

RESUMEN

We describe the application of molecular modeling to study problems related to the packing and conformation of oligofluorene molecules in the solid state. First of all, we describe an improved force field for oligofluorenes. The model is based on the MM3 force field for the intramolecular degrees of freedom, but it relies on ab initio calculations for the torsion potential between two monomers and the electrostatic interactions. We also report ab initio calculations of the interaction potentials between fluorene and fluorenone units. The force field has been tested on the crystal structures of a fluorene monomer, a dimer, and a pentamer containing a fluorenone at the center. It has then been employed to study conformational defects of the chains, both in vacuo and in the bulk. We find that certain modes of inversion from right-handed to left-handed helices are also possible within the constraining environment of the crystals. The effect of the presence of two different types of side chains has been also addressed. Finally, the possibility of having two fluorene units parallel and close to each other has been investigated as a model of a ground-state precursor of an excimer. Our simulations show that this configuration is sterically and energetically unfavorable so that formation of an excimer following optical excitation appears to be unlikely.

10.
J Colloid Interface Sci ; 479: 189-198, 2016 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-27388133

RESUMEN

The flow patterns generated by the coalescence of aqueous ethanol droplets with a water reservoir are investigated using molecular dynamics simulations. The influence of surface tension gradient, which leads to the spreading of the droplet along the liquid-vapor interface of the reservoir, is studied by changing the ethanol concentration of the droplet. The internal circulation (vortex strength) of the droplet and the reservoir are analyzed separately. Simulation results reveal the formation of swirling flows within the droplet at early times when the radius of the coalescence neck due to the capillary forces increases rapidly with time. The vortex strength is found to be higher at lower concentrations of ethanol (higher liquid-vapor surface tension of the droplet), where the driving force for the contact line movement (capillary force) is stronger. The circulation diminishes by moving the center of mass of the droplet toward the reservoir. The lower surface tension of the droplet compared to the reservoir leads to surface tension gradient driven flow, which transports the droplet molecules along the liquid-vapor interface of the reservoir. Such a flow motion results in the generation of convective flows in the underlying water, which forms swirling flows within the reservoir. Therefore, the vortex strength of the reservoir is higher at higher ethanol concentrations of the droplet. The reservoir circulation decays to zero as soon as the ethanol concentration becomes homogeneous along the interface of the pool. The time evolution of circulation within the droplet and the reservoir are correlated with the center of mass motion of the droplet toward the surface, the time variation of the precursor film radius and the dynamic surface tension of the reservoir.

11.
J Phys Chem B ; 109(16): 7859-64, 2005 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-16851915

RESUMEN

Growth studies of ultrahigh vacuum deposited thin films are often carried out ex situ, assuming the total film mass reached at the end of the deposition is preserved in the subsequent stages of film preparation. Many kinetic models commonly adopted to analyze quantitatively the mechanism of growth take into account the role of the deposition rate of molecules on the substrate surface, their diffusion, and their possible desorption. Within this framework, a strong simplification (and approximation) of the model is achieved when considering a regime of complete condensation (i.e., neglecting the possibility of re-evaporation of the deposited molecules, both during the deposition and the postdeposition stages of growth). Here, we demonstrate that, for molecular materials of relatively small organic molecules physisorbed on inert surfaces, this phenomenon may strongly affect not only the surface dynamics during deposition but also the postdeposition stage of thin film preparation. Some examples showing clearly its effects on the surface of single crystals and the thin film phase are reported and discussed. Finally, a quantitative description of desorption is provided by comparing the prediction of thermodynamics for the quaterthiophene/silica system with the experimental observation of the growth dynamics of the film and the results of approximate kinetic models. The thermodynamic model employs the surface free energies of a quaterthiophene crystal, which are evaluated by molecular simulation using a newly developed force field.

13.
Phys Rev Lett ; 98(22): 227402, 2007 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-17677877

RESUMEN

A correlation is established between the molecular structure and charge mobility of discotic mesophases of hexabenzocoronene derivatives by combining electronic structure calculations, molecular dynamics, and kinetic Monte Carlo simulations. It is demonstrated that this multiscale approach can provide an accurate ab initio description of charge transport in organic materials.

14.
J Chem Phys ; 127(6): 064305, 2007 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-17705594

RESUMEN

Using variable atomic numbers within molecular grand-canonical ensemble theory, the highest occupied Kohn-Sham eigenvalue of isoelectronic benzene derivatives is tuned. The performed transmutational changes correspond to the iterative doping with boron and nitrogen. The molecular Fukui function proves to be a reliable index in order to predict the changes in the highest occupied molecular orbital eigenvalue due to doping.

15.
J Am Chem Soc ; 128(5): 1408-9, 2006 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-16448085

RESUMEN

We describe a general simulation protocol for the evaluation of the surface free energies of molecular crystals, which are of broad interest for phenomena such as polymorphism and crystal growth. The method has been applied to selected surfaces of two polymorphs of tetrathiophene. The simulations highlight an important temperature-dependent entropic contribution to the surface free energies, which is not included in widely used static simulations of surface structure and energetics.

16.
J Chem Phys ; 125(12): 124902, 2006 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-17014203

RESUMEN

Using atomistic molecular dynamics simulations we study solid and liquid crystalline columnar discotic phases formed by alkyl-substituted hexabenzocoronene mesogens. Correlations between the molecular structure, packing, and dynamical properties of these materials are established.

17.
J Am Chem Soc ; 128(41): 13378-87, 2006 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-17031949

RESUMEN

Hot-wall epitaxy and molecular-beam epitaxy have been employed for growing quaterthiophene thin films on the (010) cleavage face of potassium hydrogen phthalate, and the results are compared in terms of film properties and growth mode. Even if there is no geometrical match between substrate and overlayer lattices, these films are epitaxially oriented. To investigate the physical rationale for this strong orientation effect, optical microscopy, atomic force microscopy, and X-ray diffraction are employed. A clear correlation between the morphology of the thin films and the crystallographic orientation is found. The results are also validated by surface potential calculations, which demonstrate the primary role played by the corrugation of the substrate surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA