Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biochem Cell Biol ; 102(3): 226-237, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38377487

RESUMEN

We here describe the structure-based design of small molecule inhibitors of the type IV secretion system of Helicobacter pylori. The secretion system is encoded by the cag pathogenicity island, and we chose Cagα, a hexameric ATPase and member of the family of VirB11-like proteins, as target for inhibitor design. We first solved the crystal structure of Cagα in a complex with the previously identified small molecule inhibitor 1G2. The molecule binds at the interface between two Cagα subunits and mutagenesis of the binding site identified Cagα residues F39 and R73 as critical for 1G2 binding. Based on the inhibitor binding site we synthesized 98 small molecule derivates of 1G2 to improve binding of the inhibitor. We used the production of interleukin-8 of gastric cancer cells during H. pylori infection to screen the potency of inhibitors and we identified five molecules (1G2_1313, 1G2_1338, 1G2_2886, 1G2_2889, and 1G2_2902) that have similar or higher potency than 1G2. Differential scanning fluorimetry suggested that these five molecules bind Cagα, and enzyme assays demonstrated that some are more potent ATPase inhibitors than 1G2. Finally, scanning electron microscopy revealed that 1G2 and its derivatives inhibit the assembly of T4SS-determined extracellular pili suggesting a mechanism for their anti-virulence effect.


Asunto(s)
Adenosina Trifosfatasas , Proteínas Bacterianas , Helicobacter pylori , Helicobacter pylori/enzimología , Humanos , Adenosina Trifosfatasas/antagonistas & inhibidores , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/química , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Sistemas de Secreción Tipo IV/metabolismo , Sistemas de Secreción Tipo IV/química , Sistemas de Secreción Tipo IV/antagonistas & inhibidores , Diseño de Fármacos , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , Cristalografía por Rayos X , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Modelos Moleculares , Sitios de Unión , Relación Estructura-Actividad , Línea Celular Tumoral , Interleucina-8/metabolismo
2.
Bioconjug Chem ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874002

RESUMEN

DNA-encoded libraries (DELs) can be considered as one of the most powerful tools for the discovery of small molecules of biological interest. However, the ability to access large DELs is contingent upon having chemical transformations that work in aqueous phase and generate minimal DNA alterations and the availability of building blocks compatible with on-DNA chemistry. In addition, accessing scaffolds of interest to medicinal chemists can be challenging in a DEL setting because of inherent limitations of DNA-supported chemistry. In this context, a squaramide formation reaction was developed by using a two-step process. The mild and high-yielding reaction tolerates a wide array of functional groups and was shown to be safe for DNA, thereby making this methodology ideal for DELs.

3.
Bioinformatics ; 35(14): i464-i473, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31510684

RESUMEN

MOTIVATION: The efficacy of a chemical compound is often tested through dose-response experiments from which efficacy metrics, such as the IC50, can be derived. The Marquardt-Levenberg algorithm (non-linear regression) is commonly used to compute estimations for these metrics. The analysis are however limited and can lead to biased conclusions. The approach does not evaluate the certainty (or uncertainty) of the estimates nor does it allow for the statistical comparison of two datasets. To compensate for these shortcomings, intuition plays an important role in the interpretation of results and the formulations of conclusions. We here propose a Bayesian inference methodology for the analysis and comparison of dose-response experiments. RESULTS: Our results well demonstrate the informativeness gain of our Bayesian approach in comparison to the commonly used Marquardt-Levenberg algorithm. It is capable to characterize the noise of dataset while inferring probable values distributions for the efficacy metrics. It can also evaluate the difference between the metrics of two datasets and compute the probability that one value is greater than the other. The conclusions that can be drawn from such analyzes are more precise. AVAILABILITY AND IMPLEMENTATION: We implemented a simple web interface that allows the users to analyze a single dose-response dataset, as well as to statistically compare the metrics of two datasets.


Asunto(s)
Algoritmos , Descubrimiento de Drogas , Teorema de Bayes , Modelos Lineales , Probabilidad
4.
Neurocrit Care ; 30(2): 440-448, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30267280

RESUMEN

BACKGROUND: Early diagnostic orientation for differentiating pneumonia from pneumonitis at the early stage after aspiration would be valuable to avoid unnecessary antibiotic therapy. We assessed the accuracy of procalcitonin (PCT) in diagnosing aspiration pneumonia (AP) in intensive care unit (ICU) patients requiring mechanical ventilation after out-of-hospital coma. METHODS: Prospective observational 2-year cohort study in a medical-surgical ICU. PCT, C-reactive protein (CRP) and white blood cell count (WBC) were measured at admission (H0) and 6 h (H), H12, H24, H48, H96, and H120 after inclusion. Lower respiratory tract microbiological investigations performed routinely in patients with aspiration syndrome were the reference standard for diagnosing AP. Performance of PCT, CRP, and WBC up to H48 in diagnosing AP was compared based on the areas under the ROC curves (AUC) and likelihood ratios (LR+ and LR-) computed for the best cutoff values. RESULTS: Of 103 patients with coma, 45 (44%) had AP. Repeated PCT assays demonstrated a significant increase in patients with AP versus without AP from H0 to H120. Among the three biomarkers, PCT showed the earliest change. ROC-AUC values were poor for all three biomarkers. Best ROC-AUC values for diagnosing AP were for CRP at H24 [0.73 (95%CI 0.61-0.84)] and PCT at H48 [0.73 (95%CI 0.61-0.84)]. LR+ was best for PCT at H24 (3.5) and LR- for CRP and WBC at H24 (0.4 and 0.4, respectively). CONCLUSIONS: Early and repeated assays of PCT, CRP, and WBC demonstrated significant increases in all three biomarkers in patients with versus without AP. All three biomarkers had poor diagnostic performance for ruling out AP. Whereas PCT had the fastest kinetics, PCT assays within 48 h after ICU admission do not help to diagnose AP in ICU patients with coma.


Asunto(s)
Coma/terapia , Cuidados Críticos/normas , Técnicas de Diagnóstico Neurológico/normas , Neumonía por Aspiración/sangre , Neumonía por Aspiración/diagnóstico , Polipéptido alfa Relacionado con Calcitonina/sangre , Respiración Artificial/efectos adversos , Adulto , Biomarcadores/sangre , Coma/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neumonía por Aspiración/etiología , Estudios Prospectivos , Sensibilidad y Especificidad
5.
Blood ; 127(24): 3054-61, 2016 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-27034432

RESUMEN

In this study, we analyzed RNA-sequencing data of 14 samples characterized by biallelic CEBPA (CEBPA(bi)) mutations included in the Leucegene collection of 415 primary acute myeloid leukemia (AML) specimens, and describe for the first time high frequency recurrent mutations in the granulocyte colony-stimulating factor receptor gene CSF3R, which signals through JAK-STAT proteins. Chemical interrogation of these primary human specimens revealed a uniform and specific sensitivity to all JAK inhibitors tested irrespective of their CSF3R mutation status, indicating a general sensitization of JAK-STAT signaling in this leukemia subset. Altogether, these results identified the co-occurrence of mutations in CSF3R and CEBPA in a well-defined AML subset, which uniformly responds to JAK inhibitors and paves the way to personalized clinical trials for this disease.


Asunto(s)
Proteínas Potenciadoras de Unión a CCAAT/genética , Resistencia a Antineoplásicos/genética , Quinasas Janus/antagonistas & inhibidores , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Inhibidores de Proteínas Quinasas/uso terapéutico , Receptores del Factor Estimulante de Colonias/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Análisis Mutacional de ADN/métodos , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Perfilación de la Expresión Génica , Frecuencia de los Genes , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Leucemia Mieloide Aguda/clasificación , Leucemia Mieloide Aguda/patología , Masculino , Persona de Mediana Edad , Mutación , Medicina de Precisión , Transcriptoma , Células Tumorales Cultivadas , Adulto Joven
6.
Nat Methods ; 11(4): 436-42, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24562423

RESUMEN

Leukemic stem cells (LSCs) are considered a major cause of relapse in acute myeloid leukemia (AML). Defining pathways that control LSC self-renewal is crucial for a better understanding of underlying mechanisms and for the development of targeted therapies. However, currently available culture conditions do not prevent spontaneous differentiation of LSCs, which greatly limits the feasibility of cell-based assays. To overcome these constraints we conducted a high-throughput chemical screen and identified small molecules that inhibit differentiation and support LSC activity in vitro. Similar to reports with cord blood stem cells, several of these compounds suppressed the aryl-hydrocarbon receptor (AhR) pathway, which we show to be inactive in vivo and rapidly activated ex vivo in AML cells. We also identified a compound, UM729, that collaborates with AhR suppressors in preventing AML cell differentiation. Together, these findings provide newly defined culture conditions for improved ex vivo culture of primary human AML cells.


Asunto(s)
Adenina/análogos & derivados , Técnicas de Cultivo de Célula/métodos , Indoles/farmacología , Leucemia/metabolismo , Células Madre Neoplásicas/fisiología , Pirimidinas/farmacología , Adenina/farmacología , Medio de Cultivo Libre de Suero , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Leucemia Mieloide Aguda , Estructura Molecular
7.
Nat Chem Biol ; 10(2): 156-163, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24316736

RESUMEN

Weak protein interactions between ubiquitin and the ubiquitin-proteasome system (UPS) enzymes that mediate its covalent attachment to substrates serve to position ubiquitin for optimal catalytic transfer. We show that a small-molecule inhibitor of the E2 ubiquitin-conjugating enzyme Cdc34A, called CC0651, acts by trapping a weak interaction between ubiquitin and the E2 donor ubiquitin-binding site. A structure of the ternary CC0651-Cdc34A-ubiquitin complex reveals that the inhibitor engages a composite binding pocket formed from Cdc34A and ubiquitin. CC0651 also suppresses the spontaneous hydrolysis rate of the Cdc34A-ubiquitin thioester without decreasing the interaction between Cdc34A and the RING domain subunit of the E3 enzyme. Stabilization of the numerous other weak interactions between ubiquitin and UPS enzymes by small molecules may be a feasible strategy to selectively inhibit different UPS activities.


Asunto(s)
Aminoácidos/química , Compuestos de Bifenilo/química , Enzimas Ubiquitina-Conjugadoras/antagonistas & inhibidores , Ubiquitina/química , Aminoácidos/farmacología , Sitios de Unión , Compuestos de Bifenilo/farmacología , Complejos de Coordinación/química , Cristalografía por Rayos X , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Concentración 50 Inhibidora , Modelos Moleculares , Unión Proteica , Estabilidad Proteica/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología
8.
J Mol Biol ; 436(2): 168378, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-38043731

RESUMEN

The UDP glucuronosyltransferases (UGT) deactivate many therapeutics via glucuronidation while being required for clearance of normal metabolites and xenobiotics. There are 19 UGT enzymes categorized into UGT1A and UGT2B families based on sequence conservation. This presents a challenge in terms of targeting specific UGTs to overcome drug resistance without eliciting overt toxicity. Here, we identified for the first time that UGT1A4 is highly elevated in acute myeloid leukemia (AML) patients and its reduction corresponded to objective clinical responses. To develop inhibitors to UGT1A4, we leveraged previous NMR-based fragment screening data against the C-terminal domain of UGT1A (UGT1A-C). NMR and medicinal chemistry strategies identified novel chemical matter based on fragment compounds with the capacity to bind ∼20 fold more tightly to UGT1A-C (Kd âˆ¼ 600 µM vs ∼30 µM). Some compounds differentially inhibited UGT1A4 versus UGT1A1 enzyme activity and restored drug sensitivity in resistant human cancer cells. NMR-based NOE experiments revealed these novel compounds recognised a region distal to the catalytic site suggestive of allosteric regulation. This binding region is poorly conserved between UGT1A and UGT2B C-terminal sequences, which otherwise exhibit high similarity. Consistently, these compounds did not bind to the C-terminal domain of UGT2B7 nor a triple mutant of UGT1A-C replaced with UGT2B7 residues in this region. Overall, we discovered a site on UGTs that can be leveraged to differentially target UGT1As and UGT2Bs, identified UGT1A4 as a therapeutic target, and found new chemical matter that binds the UGT1A C-terminus, inhibits glucuronidation and restores drug sensitivity.


Asunto(s)
Descubrimiento de Drogas , Resistencia a Antineoplásicos , Inhibidores Enzimáticos , Glucuronosiltransferasa , Humanos , Dominio Catalítico , Química Farmacéutica , Glucuronosiltransferasa/antagonistas & inhibidores , Uridina Difosfato , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Espectroscopía de Resonancia Magnética/métodos
9.
Sci Adv ; 10(12): eadl4018, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38517966

RESUMEN

In a phenotypical screen of 56 acute myeloid leukemia (AML) patient samples and using a library of 10,000 compounds, we identified a hit with increased sensitivity toward SF3B1-mutated and adverse risk AMLs. Through structure-activity relationship studies, this hit was optimized into a potent, specific, and nongenotoxic molecule called UM4118. We demonstrated that UM4118 acts as a copper ionophore that initiates a mitochondrial-based noncanonical form of cell death known as cuproptosis. CRISPR-Cas9 loss-of-function screen further revealed that iron-sulfur cluster (ISC) deficiency enhances copper-mediated cell death. Specifically, we found that loss of the mitochondrial ISC transporter ABCB7 is synthetic lethal to UM4118. ABCB7 is misspliced and down-regulated in SF3B1-mutated leukemia, creating a vulnerability to copper ionophores. Accordingly, ABCB7 overexpression partially rescued SF3B1-mutated cells to copper overload. Together, our work provides mechanistic insights that link ISC deficiency to cuproptosis, as exemplified by the high sensitivity of SF3B1-mutated AMLs. We thus propose SF3B1 mutations as a biomarker for future copper ionophore-based therapies.


Asunto(s)
Cobre , Leucemia Mieloide Aguda , Humanos , Cobre/metabolismo , Factores de Empalme de ARN/genética , Mutación , Leucemia Mieloide Aguda/genética , Ionóforos/farmacología , Fosfoproteínas/metabolismo
10.
ACS Chem Biol ; 18(5): 1039-1046, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37097827

RESUMEN

p21Cip1 (p21) is a universal cyclin-dependent kinase (CDK) inhibitor that halts cell proliferation and tumor growth by multiple mechanisms. The expression of p21 is often downregulated in cancer cells as a result of the loss of function of transcriptional activators, such as p53, or the increased degradation rate of the protein. To identify small molecules that block the ubiquitin-mediated degradation of p21 as a future avenue for cancer drug discovery, we have screened a compound library using a cell-based reporter assay of p21 degradation. This led to the identification of a benzodiazepine series of molecules that induce the accumulation of p21 in cells. Using a chemical proteomic strategy, we identified the ubiquitin-conjugating enzyme UBCH10 as a cellular target of this benzodiazepine series. We show that an optimized benzodiazepine analogue inhibits UBCH10 ubiquitin-conjugating activity and substrate proteolysis by the anaphase-promoting complex.


Asunto(s)
Benzodiazepinas , Enzimas Ubiquitina-Conjugadoras , Enzimas Ubiquitina-Conjugadoras/química , Benzodiazepinas/farmacología , Proteómica , Ubiquitina/metabolismo , Núcleo Celular/metabolismo
11.
Blood Adv ; 6(16): 4793-4806, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35797243

RESUMEN

High-mobility group AT-hook 2 (HMGA2) is a nonhistone chromatin-binding protein that is normally expressed in stem cells of various tissues and aberrantly detected in several tumor types. We recently observed that one-fourth of human acute myeloid leukemia (AML) specimens express HMGA2, which associates with a very poor prognosis. We present results indicating that HMGA2+ AMLs share a distinct transcriptional signature representing an immature phenotype. Using single-cell analyses, we showed that HMGA2 is expressed in CD34+ subsets of stem cells and early progenitors, whether normal or derived from AML specimens. Of interest, we found that one of the strongest gene expression signatures associated with HMGA2 in AML is the upregulation of G2/M checkpoint genes. Whole-genome CRISPR/Cas9 screening in HMGA2 overexpressing cells further revealed a synthetic lethal interaction with several G2/M checkpoint genes. Accordingly, small molecules that target G2/M proteins were preferentially active in vitro and in vivo on HMGA2+ AML specimens. Together, our findings suggest that HMGA2 is a key functional determinant in AML and is associated with stem cell features, G2/M status, and related drug sensitivity.


Asunto(s)
Leucemia Mieloide Aguda , Antígenos CD34 , Puntos de Control del Ciclo Celular , Humanos , Leucemia Mieloide Aguda/patología , Regulación hacia Arriba
12.
Blood Adv ; 6(2): 509-514, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34731885

RESUMEN

Cholesterol homeostasis has been proposed as one mechanism contributing to chemoresistance in AML and hence, inclusion of statins in therapeutic regimens as part of clinical trials in AML has shown encouraging results. Chemical screening of primary human AML specimens by our group led to the identification of lipophilic statins as potent inhibitors of AMLs from a wide range of cytogenetic groups. Genetic screening to identify modulators of the statin response uncovered the role of protein geranylgeranylation and of RAB proteins, coordinating various aspect of vesicular trafficking, in mediating the effects of statins on AML cell viability. We further show that statins can inhibit vesicle-mediated transport in primary human specimens, and that statins sensitive samples show expression signatures reminiscent of enhanced vesicular trafficking. Overall, this study sheds light into the mechanism of action of statins in AML and identifies a novel vulnerability for cytogenetically diverse AML.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Leucemia Mieloide Aguda , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética
13.
J Med Chem ; 65(13): 8843-8854, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35729784

RESUMEN

Protease-activated receptor 4 (PAR4) is a G-protein coupled receptor that is expressed on human platelets and activated by the coagulation enzyme thrombin. PAR4 plays a key role in blood coagulation, and its importance in pathological thrombosis has been increasingly recognized in recent years. Herein, we describe the optimization of a series of imidazothiadiazole PAR4 antagonists to a first-in-class clinical candidate, BMS-986120 (43), and a backup clinical candidate, BMS-986141 (49). Both compounds demonstrated excellent antithrombotic efficacy and minimal bleeding time prolongation in monkey models relative to the clinically important antiplatelet agent clopidogrel and provide a potential opportunity to improve the standard of care in the treatment of arterial thrombosis.


Asunto(s)
Agregación Plaquetaria , Trombosis , Benzofuranos , Plaquetas , Humanos , Imidazoles , Morfolinas , Receptor PAR-1 , Receptores de Trombina , Tiazoles , Trombina , Trombosis/tratamiento farmacológico
14.
Nat Commun ; 13(1): 2801, 2022 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35589701

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) is commonly driven by activating mutations in NOTCH1 that facilitate glutamine oxidation. Here we identify oxidative phosphorylation (OxPhos) as a critical pathway for leukemia cell survival and demonstrate a direct relationship between NOTCH1, elevated OxPhos gene expression, and acquired chemoresistance in pre-leukemic and leukemic models. Disrupting OxPhos with IACS-010759, an inhibitor of mitochondrial complex I, causes potent growth inhibition through induction of metabolic shut-down and redox imbalance in NOTCH1-mutated and less so in NOTCH1-wt T-ALL cells. Mechanistically, inhibition of OxPhos induces a metabolic reprogramming into glutaminolysis. We show that pharmacological blockade of OxPhos combined with inducible knock-down of glutaminase, the key glutamine enzyme, confers synthetic lethality in mice harboring NOTCH1-mutated T-ALL. We leverage on this synthetic lethal interaction to demonstrate that IACS-010759 in combination with chemotherapy containing L-asparaginase, an enzyme that uncovers the glutamine dependency of leukemic cells, causes reduced glutaminolysis and profound tumor reduction in pre-clinical models of human T-ALL. In summary, this metabolic dependency of T-ALL on OxPhos provides a rational therapeutic target.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animales , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Glutamina/metabolismo , Ratones , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptor Notch1/metabolismo , Linfocitos T/metabolismo
15.
Cell Stem Cell ; 28(1): 48-62.e6, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33417871

RESUMEN

Human hematopoietic stem cells (HSCs) exhibit attrition of their self-renewal capacity when cultured ex vivo, a process that is partially reversed upon treatment with epigenetic modifiers, most notably inhibitors of histone deacetylases (HDACs) or lysine-specific demethylase LSD1. A recent study showed that the human HSC self-renewal agonist UM171 modulates the CoREST complex, leading to LSD1 degradation, whose inhibition mimics the activity of UM171. The mechanism underlying the UM171-mediated loss of CoREST function remains undetermined. We now report that UM171 potentiates the activity of a CULLIN3-E3 ubiquitin ligase (CRL3) complex whose target specificity is dictated by the poorly characterized Kelch/BTB domain protein KBTBD4. CRL3KBTBD4 targets components of the LSD1/RCOR1 corepressor complex for proteasomal degradation, hence re-establishing H3K4me2 and H3K27ac epigenetic marks, which are rapidly decreased upon ex vivo culture of human HSCs.


Asunto(s)
Proteínas Co-Represoras , Epigénesis Genética , Células Madre Hematopoyéticas , Proteínas Co-Represoras/genética , Proteínas Co-Represoras/metabolismo , Células Madre Hematopoyéticas/metabolismo , Histona Desacetilasas/metabolismo , Humanos
16.
Sci Adv ; 7(44): eabi5797, 2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34705497

RESUMEN

Pharmacological control of the ubiquitin-proteasome system (UPS) is of intense interest in drug discovery. Here, we report the development of chemical inhibitors of the ubiquitin-conjugating (E2) enzyme CDC34A (also known as UBE2R1), which donates activated ubiquitin to the cullin-RING ligase (CRL) family of ubiquitin ligase (E3) enzymes. A FRET-based interaction assay was used to screen for novel compounds that stabilize the noncovalent complex between CDC34A and ubiquitin, and thereby inhibit the CDC34A catalytic cycle. An isonipecotamide hit compound was elaborated into analogs with ~1000-fold increased potency in stabilizing the CDC34A-ubiquitin complex. These analogs specifically inhibited CDC34A-dependent ubiquitination in vitro and stabilized an E2~ubiquitin thioester reaction intermediate in cells. The x-ray crystal structure of a CDC34A-ubiquitin-inhibitor complex uncovered the basis for analog structure-activity relationships. The development of chemical stabilizers of the CDC34A-ubiquitin complex illustrates a general strategy for de novo discovery of molecular glue compounds that stabilize weak protein interactions.

17.
Nat Commun ; 12(1): 4688, 2021 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344896

RESUMEN

Internalization and intracellular trafficking of G protein-coupled receptors (GPCRs) play pivotal roles in cell responsiveness. Dysregulation in receptor trafficking can lead to aberrant signaling and cell behavior. Here, using an endosomal BRET-based assay in a high-throughput screen with the prototypical GPCR angiotensin II type 1 receptor (AT1R), we sought to identify receptor trafficking inhibitors from a library of ~115,000 small molecules. We identified a novel dual Ras and ARF6 inhibitor, which we named Rasarfin, that blocks agonist-mediated internalization of AT1R and other GPCRs. Rasarfin also potently inhibits agonist-induced ERK1/2 signaling by GPCRs, and MAPK and Akt signaling by EGFR, as well as prevents cancer cell proliferation. In silico modeling and in vitro studies reveal a unique binding modality of Rasarfin within the SOS-binding domain of Ras. Our findings unveil a class of dual small G protein inhibitors for receptor trafficking and signaling, useful for the inhibition of oncogenic cellular responses.


Asunto(s)
Factores de Ribosilacion-ADP/antagonistas & inhibidores , Endocitosis/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Proteínas ras/antagonistas & inhibidores , Factor 6 de Ribosilación del ADP , Factores de Ribosilacion-ADP/metabolismo , Sitios de Unión , Transferencia de Energía por Resonancia de Bioluminiscencia , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Descubrimiento de Drogas , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Células HEK293 , Humanos , Simulación de Dinámica Molecular , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas ras/química , Proteínas ras/metabolismo
18.
ACS Med Chem Lett ; 11(11): 2261-2267, 2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33214838

RESUMEN

Trimethoprim (TMP) is widely used to treat infections in humans and in livestock, accelerating the incidence of TMP resistance. The emergent and largely untracked type II dihydrofolate reductases (DfrBs) are intrinsically TMP-resistant plasmid-borne Dfrs that are structurally and evolutionarily unrelated to chromosomal Dfrs. We report kinetic characterization of the known DfrB family members. Their kinetic constants are conserved and all are poorly inhibited by TMP, consistent with TMP resistance. We investigate their inhibition with known and novel bisubstrate inhibitors of 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase (HPPK). Importantly, all are inhibited by the HPPK inhibitors, making these molecules dual-target inhibitors of two folate pathway enzymes that are strictly microbial.

19.
Leukemia ; 34(1): 63-74, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31300747

RESUMEN

Acute myeloid leukemias (AML) with mutations in the NPM1 gene (NPM1c+) represent a large AML subgroup with varying response to conventional treatment, highlighting the need to develop targeted therapeutic strategies for this disease. We screened a library of clinical drugs on a cohort of primary human AML specimens and identified the BCL2 inhibitor ABT-199 as a selective agent against NPM1c+ AML. Mutational analysis of ABT-199-sensitive and -resistant specimens identified mutations in NPM1, RAD21, and IDH1/IDH2 as predictors of ABT-199 sensitivity. Comparative transcriptome analysis further uncovered BCL2A1 as a potential mediator of ABT-199 resistance in AML. In line with our observation that RAD21 mutation confers sensitivity to ABT-199, we provide functional evidence that reducing RAD21 levels can sensitize AML cells to BCL2 inhibition. Moreover, we demonstrate that ABT-199 is able to produce selective anti-AML activity in vivo toward AML with mutations associated with compound sensitivity in PDX models. Overall, this study delineates the contribution of several genetic events to the response to ABT-199 and provides a rationale for the development of targeted therapies for NPM1c+ AML.


Asunto(s)
Antineoplásicos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Resistencia a Antineoplásicos/genética , Leucemia Mieloide Aguda/genética , Antígenos de Histocompatibilidad Menor/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Sulfonamidas/farmacología , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Mutación , Proteínas Nucleares/genética , Nucleofosmina , Células Tumorales Cultivadas
20.
Lancet Haematol ; 7(2): e134-e145, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31704264

RESUMEN

BACKGROUND: Benefits of cord blood transplantation include low rates of relapse and chronic graft-versus-host disease (GVHD). However, the use of cord blood is rapidly declining because of the high incidence of infections, severe acute GVHD, and transplant-related mortality. UM171, a haematopoietic stem cell self-renewal agonist, has been shown to expand cord blood stem cells and enhance multilineage blood cell reconstitution in mice. We aimed to investigate the safety and feasibility of single UM171-expanded cord blood transplantation in patients with haematological malignancies who do not have a suitable HLA-matched donor. METHODS: This single-arm, open-label, phase 1-2 safety and feasibility study was done at two hospitals in Canada. The study had two parts. In part 1, patients received two cord blood units (one expanded with UM171 and one unmanipulated cord blood) until UM171-expanded cord blood demonstrated engraftment. Once engraftment was documented we initiated part 2, reported here, in which patients received a single UM171-expanded cord blood unit with a dose de-escalation design to determine the minimal cord blood unit cell dose that achieved prompt engraftment. Eligible patients were aged 3-64 years, weighed 12 kg or more, had a haematological malignancy with an indication for allogeneic hematopoietic stem cell transplant and did not have a suitable HLA-matched donor, and a had a Karnofsky performance status score of 70% or more. Five clinical sites were planned to participate in the study; however, only two study sites opened, both of which only treated adult patients, thus no paediatric patients (aged <18 years) were recruited. Patients aged younger than 50 years without comorbidities received a myeloablative conditioning regimen (cyclophosphamide 120 mg/kg, fludarabine 75 mg/m2, and 12 Gy total body irradiation) and patients aged older than 50 years and those with comorbidities received a less myeloablative conditioning regimen (cyclophosphamide 50 mg/kg, thiotepa 10 mg/kg, fludarabine 150 mg/m2, and 4 Gy total body irradiation). Patients were infused with the 7-day UM171-expanded CD34-positive cells and the lymphocyte-containing CD34-negative fraction. The primary endpoints were feasibility of UM171 expansion, safety of the transplant, kinetics of hematopoietic reconstitution (time to neutrophil and platelet engraftment) of UM171-expanded cord blood, and minimal pre-expansion cord blood unit cell dose that achieved prompt engraftment. We analysed feasibility in all enrolled patients and all other primary outcomes were analysed per protocol, in all patients who received single UM171-expanded cord blood transplantation. This trial has been completed and was registered with ClinicalTrials.gov, NCT02668315. FINDINGS: Between Feb 17, 2016, and Nov 11, 2018, we enrolled 27 patients, four of whom received two cord blood units for safety purposes in part 1 of the study. 23 patients were subsequently enrolled in part 2 to receive a single UM171-expanded cord blood transplant and 22 patients received a single UM171-expanded cord blood transplantation. At data cutoff (Dec 31, 2018), median follow-up was 18 months (IQR 12-22). The minimal cord blood unit cell dose at thaw that achieved prompt engraftment as a single cord transplant after UM171 expansion was 0·52 × 105 CD34-positive cells. We successfully expanded 26 (96%) of 27 cord blood units with UM171. Among the 22 patients who received single UM171-expanded cord blood transplantation, median time to engraftment of 100 neutrophils per µL was 9·5 days (IQR 8-12), median time to engraftment of 500 neutrophils per µL was 18 days (12·5-20·0), and no graft failure occurred. Median time to platelet recovery was 42 days (IQR 35-47). The most common non-haematological adverse events were grade 3 febrile neutropenia (16 [73%] of 22 patients) and bacteraemia (nine [41%]). No unexpected adverse events were observed. One (5%) of 22 patients died due to treatment-related diffuse alveolar haemorrhage. INTERPRETATION: Our preliminary findings suggest that UM171 cord blood stem cell expansion is feasible, safe, and allows for the use of small single cords without compromising engraftment. UM171-expanded cord blood might have the potential to overcome the disadvantages of other cord blood transplants while maintaining the benefits of low risk of chronic GVHD and relapse, and warrants further investigation in randomised trials. FUNDING: Canadian Institutes of Health Research, Canadian Cancer Society and Stem Cell Network.


Asunto(s)
Trasplante de Células Madre de Sangre del Cordón Umbilical/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas/efectos de los fármacos , Indoles/farmacología , Pirimidinas/farmacología , Adolescente , Adulto , Autorrenovación de las Células/efectos de los fármacos , Células Cultivadas/efectos de los fármacos , Células Cultivadas/trasplante , Trasplante de Células Madre de Sangre del Cordón Umbilical/efectos adversos , Supervivencia sin Enfermedad , Estudios de Factibilidad , Neutropenia Febril/etiología , Femenino , Supervivencia de Injerto , Enfermedad Injerto contra Huésped/etiología , Neoplasias Hematológicas/terapia , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Células Madre Hematopoyéticas/citología , Humanos , Recién Nacido , Masculino , Persona de Mediana Edad , Modelos de Riesgos Proporcionales , Resultado del Tratamiento , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA