Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Liver Int ; 44(9): 2409-2423, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38847511

RESUMEN

BACKGROUND AND AIMS: Cyclooxygenase-2 (COX-2) is involved in different liver diseases, but little is known about the significance of COX-2 in cholestatic injury. This study was designed to elucidate the role of COX-2 expression in hepatocytes during the pathogenesis of obstructive cholestasis. METHODS: We used genetically modified mice constitutively expressing human COX-2 in hepatocytes. Transgenic mice (hCOX-2-Tg) and their wild-type (Wt) littermates were either subjected to a mid-abdominal laparotomy or common bile duct ligation (BDL) for 2 or 5 days. Then, we explored the mechanisms underlying the role of COX-2 and its derived prostaglandins in liver function, and the synthesis and excretion of bile acids (BA) in response to cholestatic liver injury. RESULTS: After BDL, hCOX-2-Tg mice showed lower grades of hepatic necrosis and inflammation than Wt mice, in part by a reduced hepatic neutrophil recruitment associated with lower mRNA levels of pro-inflammatory cytokines. Furthermore, hCOX-2-Tg mice displayed a differential metabolic pattern of BA synthesis that led to an improved clearance after BDL-induced accumulation. In addition, an enhanced response to the BDL-induced oxidative stress and hepatic apoptosis was observed. In vitro experiments using hepatic cells that stably express hCOX-2 confirmed the cytoprotective role of prostaglandin E2 against BA toxicity. CONCLUSIONS: Taken together, our data indicate that constitutive expression of COX-2 in hepatocytes ameliorates cholestatic liver injury in mice by reducing inflammation and cell damage and by modulating BA metabolism, pointing to a role for COX-2 as a defensive response against cholestasis-derived BA accumulation and injury.


Asunto(s)
Ácidos y Sales Biliares , Colestasis , Conducto Colédoco , Ciclooxigenasa 2 , Hepatocitos , Hígado , Ratones Transgénicos , Animales , Humanos , Masculino , Ratones , Apoptosis , Ácidos y Sales Biliares/metabolismo , Colestasis/metabolismo , Conducto Colédoco/cirugía , Ciclooxigenasa 2/metabolismo , Ciclooxigenasa 2/genética , Modelos Animales de Enfermedad , Hepatocitos/metabolismo , Ligadura , Hígado/patología , Hígado/metabolismo , Estrés Oxidativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA