Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34088849

RESUMEN

Somatic cell transcription factors are critical to maintaining cellular identity and constitute a barrier to human somatic cell reprogramming; yet a comprehensive understanding of the mechanism of action is lacking. To gain insight, we examined epigenome remodeling at the onset of human nuclear reprogramming by profiling human fibroblasts after fusion with murine embryonic stem cells (ESCs). By assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq) and chromatin immunoprecipitation sequencing we identified enrichment for the activator protein 1 (AP-1) transcription factor c-Jun at regions of early transient accessibility at fibroblast-specific enhancers. Expression of a dominant negative AP-1 mutant (dnAP-1) reduced accessibility and expression of fibroblast genes, overcoming the barrier to reprogramming. Remarkably, efficient reprogramming of human fibroblasts to induced pluripotent stem cells was achieved by transduction with vectors expressing SOX2, KLF4, and inducible dnAP-1, demonstrating that dnAP-1 can substitute for exogenous human OCT4. Mechanistically, we show that the AP-1 component c-Jun has two unexpected temporally distinct functions in human reprogramming: 1) to potentiate fibroblast enhancer accessibility and fibroblast-specific gene expression, and 2) to bind to and repress OCT4 as a complex with MBD3. Our findings highlight AP-1 as a previously unrecognized potent dual gatekeeper of the somatic cell state.


Asunto(s)
Reprogramación Celular , Regulación de la Expresión Génica , Células Madre Embrionarias de Ratones/metabolismo , Factor de Transcripción AP-1/metabolismo , Animales , Línea Celular , Humanos , Factor 4 Similar a Kruppel , Ratones , Factor de Transcripción AP-1/genética
2.
Genome Res ; 22(8): 1383-94, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22665443

RESUMEN

Many perspectives on the role of evolution in human health include nonempirical assumptions concerning the adaptive evolutionary origins of human diseases. Evolutionary analyses of the increasing wealth of clinical and population genomic data have begun to challenge these presumptions. In order to systematically evaluate such claims, the time has come to build a common framework for an empirical and intellectual unification of evolution and modern medicine. We review the emerging evidence and provide a supporting conceptual framework that establishes the classical neutral theory of molecular evolution (NTME) as the basis for evaluating disease- associated genomic variations in health and medicine. For over a decade, the NTME has already explained the origins and distribution of variants implicated in diseases and has illuminated the power of evolutionary thinking in genomic medicine. We suggest that a majority of disease variants in modern populations will have neutral evolutionary origins (previously neutral), with a relatively smaller fraction exhibiting adaptive evolutionary origins (previously adaptive). This pattern is expected to hold true for common as well as rare disease variants. Ultimately, a neutral evolutionary perspective will provide medicine with an informative and actionable framework that enables objective clinical assessment beyond convenient tendencies to invoke past adaptive events in human history as a root cause of human disease.


Asunto(s)
Evolución Molecular , Enfermedades Genéticas Congénitas/genética , Variación Genética , Genoma Humano , Adaptación Biológica , Alelos , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Genética de Población , Humanos , Medicina Molecular/métodos , Selección Genética
3.
Dev Biol ; 363(1): 308-19, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22178152

RESUMEN

The axial skeleton is a defining feature of vertebrates and is patterned during somitogenesis. Cyclically expressed members of the notch and other signaling pathways, described as the 'segmentation clock', regulate the formation of somite boundaries. Comparisons among vertebrate model systems have revealed fundamental shifts in the regulation of expression among critical genes in the notch pathway. However, insights into the evolution of these expression differences have been limited by the lack of information from non-avian reptiles. We analyzed the segmentation clock of the first Lepidosaurian reptile sequenced, the green anole lizard, Anolis carolinensis, for comparison with avian and mammalian models. Using genomic sequence, RNA-Seq transcriptomic data, and in situ hybridization analysis of somite-stage embryos, we carried out comparative analyses of key genes and found that the anole segmentation clock displays features common to both amniote and anamniote vertebrates. Shared features with anamniotes, represented by Xenopus laevis and Danio rerio, include an absence of lunatic fringe (lfng) expression within the presomitic mesoderm (PSM), a hes6a gradient in the PSM not observed in the chicken or mouse, and EGF repeat structure of the divergent notch ligand, dll3. The anole and mouse share cycling expression of dll1 ligand in the PSM. To gain insight from an Archosaurian reptile, we analysed LFNG and DLL1 expressions in the American alligator. LFNG expression was absent in the alligator PSM, like the anole but unlike the chicken. In contrast, DLL1 expression does not cycle in the PSM of the alligator, similar to the chicken but unlike the anole. Thus, our analysis yields novel insights into features of the segmentation clock that are evolutionarily basal to amniotes versus those that are specific to mammals, Lepidosaurian reptiles, or Archosaurian reptiles.


Asunto(s)
Caimanes y Cocodrilos/genética , Variación Genética , Lagartos/genética , Somitos/metabolismo , Caimanes y Cocodrilos/embriología , Secuencia de Aminoácidos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/clasificación , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Proteínas CLOCK/clasificación , Proteínas CLOCK/genética , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Evolución Molecular , Femenino , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Péptidos y Proteínas de Señalización Intracelular/clasificación , Péptidos y Proteínas de Señalización Intracelular/genética , Lagartos/embriología , Masculino , Mesodermo/embriología , Mesodermo/metabolismo , Datos de Secuencia Molecular , Filogenia , Somitos/embriología , Transcriptoma/genética
4.
BMC Genomics ; 14: 49, 2013 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-23343042

RESUMEN

BACKGROUND: The green anole lizard, Anolis carolinensis, is a key species for both laboratory and field-based studies of evolutionary genetics, development, neurobiology, physiology, behavior, and ecology. As the first non-avian reptilian genome sequenced, A. carolinesis is also a prime reptilian model for comparison with other vertebrate genomes. The public databases of Ensembl and NCBI have provided a first generation gene annotation of the anole genome that relies primarily on sequence conservation with related species. A second generation annotation based on tissue-specific transcriptomes would provide a valuable resource for molecular studies. RESULTS: Here we provide an annotation of the A. carolinensis genome based on de novo assembly of deep transcriptomes of 14 adult and embryonic tissues. This revised annotation describes 59,373 transcripts, compared to 16,533 and 18,939 currently for Ensembl and NCBI, and 22,962 predicted protein-coding genes. A key improvement in this revised annotation is coverage of untranslated region (UTR) sequences, with 79% and 59% of transcripts containing 5' and 3' UTRs, respectively. Gaps in genome sequence from the current A. carolinensis build (Anocar2.0) are highlighted by our identification of 16,542 unmapped transcripts, representing 6,695 orthologues, with less than 70% genomic coverage. CONCLUSIONS: Incorporation of tissue-specific transcriptome sequence into the A. carolinensis genome annotation has markedly improved its utility for comparative and functional studies. Increased UTR coverage allows for more accurate predicted protein sequence and regulatory analysis. This revised annotation also provides an atlas of gene expression specific to adult and embryonic tissues.


Asunto(s)
Embrión no Mamífero/metabolismo , Perfilación de la Expresión Génica , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Lagartos/embriología , Lagartos/genética , Anotación de Secuencia Molecular/métodos , Animales , Humanos , Ratones , ARN Mensajero/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN
5.
Genome Res ; 19(9): 1562-9, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19546171

RESUMEN

As the cost of DNA sequencing drops, we are moving beyond one genome per species to one genome per individual to improve prevention, diagnosis, and treatment of disease by using personal genotypes. Computational methods are frequently applied to predict impairment of gene function by nonsynonymous mutations in individual genomes and single nucleotide polymorphisms (nSNPs) in populations. These computational tools are, however, known to fail 15%-40% of the time. We find that accurate discrimination between benign and deleterious mutations is strongly influenced by the long-term (among species) history of positions that harbor those mutations. Successful prediction of known disease-associated mutations (DAMs) is much higher for evolutionarily conserved positions and for original-mutant amino acid pairs that are rarely seen among species. Prediction accuracies for nSNPs show opposite patterns, forecasting impediments to building diagnostic tools aiming to simultaneously reduce both false-positive and false-negative errors. The relative allele frequencies of mutations diagnosed as benign and damaging are predicted by positional evolutionary rates. These allele frequencies are modulated by the relative preponderance of the mutant allele in the set of amino acids found at homologous sites in other species (evolutionarily permissible alleles [EPAs]). The nSNPs found in EPAs are biochemically less severe than those missing from EPAs across all allele frequency categories. Therefore, it is important to consider position evolutionary rates and EPAs when interpreting the consequences and population frequencies of human mutations. The impending sequencing of thousands of human and many more vertebrate genomes will lead to more accurate classifiers needed in real-world applications.


Asunto(s)
Aminoácidos/genética , Evolución Molecular , Frecuencia de los Genes , Enfermedades Genéticas Congénitas/diagnóstico , Mutación , Sustitución de Aminoácidos , Biología Computacional/métodos , Enfermedades Genéticas Congénitas/genética , Predisposición Genética a la Enfermedad , Genoma Humano/genética , Humanos , Polimorfismo de Nucleótido Simple
6.
Nat Cell Biol ; 20(8): 900-908, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30013107

RESUMEN

Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) is now routinely accomplished by overexpression of the four Yamanaka factors (OCT4, SOX2, KLF4, MYC (or OSKM))1. These iPSCs can be derived from patients' somatic cells and differentiated toward diverse fates, serving as a resource for basic and translational research. However, mechanistic insights into regulators and pathways that initiate the pluripotency network remain to be resolved. In particular, naturally occurring molecules that activate endogenous OCT4 and replace exogenous OCT4 in human iPSC reprogramming have yet to be found. Using a heterokaryon reprogramming system we identified NKX3-1 as an early and transiently expressed homeobox transcription factor. Following knockdown of NKX3-1, iPSC reprogramming is abrogated. NKX3-1 functions downstream of the IL-6-STAT3 regulatory network to activate endogenous OCT4. Importantly, NKX3-1 substitutes for exogenous OCT4 to reprogram both mouse and human fibroblasts at comparable efficiencies and generate fully pluripotent stem cells. Our findings establish an essential role for NKX3-1, a prostate-specific tumour suppressor, in iPSC reprogramming.


Asunto(s)
Técnicas de Reprogramación Celular , Reprogramación Celular , Proteínas de Homeodominio/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción/metabolismo , Animales , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Factor 3 de Transcripción de Unión a Octámeros/genética , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Factores de Tiempo , Factores de Transcripción/genética
7.
PLoS One ; 9(11): e112430, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25390934

RESUMEN

Supercentenarians (110 years or older) are the world's oldest people. Seventy four are alive worldwide, with twenty two in the United States. We performed whole-genome sequencing on 17 supercentenarians to explore the genetic basis underlying extreme human longevity. We found no significant evidence of enrichment for a single rare protein-altering variant or for a gene harboring different rare protein altering variants in supercentenarian compared to control genomes. We followed up on the gene most enriched for rare protein-altering variants in our cohort of supercentenarians, TSHZ3, by sequencing it in a second cohort of 99 long-lived individuals but did not find a significant enrichment. The genome of one supercentenarian had a pathogenic mutation in DSC2, known to predispose to arrhythmogenic right ventricular cardiomyopathy, which is recommended to be reported to this individual as an incidental finding according to a recent position statement by the American College of Medical Genetics and Genomics. Even with this pathogenic mutation, the proband lived to over 110 years. The entire list of rare protein-altering variants and DNA sequence of all 17 supercentenarian genomes is available as a resource to assist the discovery of the genetic basis of extreme longevity in future studies.


Asunto(s)
Envejecimiento/genética , Genoma Humano , Longevidad/genética , Anciano de 80 o más Años , Desmocolinas/genética , Femenino , Estudio de Asociación del Genoma Completo , Proteínas de Homeodominio/genética , Humanos , Masculino , Mutación , Análisis de Secuencia de ADN
8.
PLoS One ; 9(8): e105004, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25140675

RESUMEN

Lizards, which are amniote vertebrates like humans, are able to lose and regenerate a functional tail. Understanding the molecular basis of this process would advance regenerative approaches in amniotes, including humans. We have carried out the first transcriptomic analysis of tail regeneration in a lizard, the green anole Anolis carolinensis, which revealed 326 differentially expressed genes activating multiple developmental and repair mechanisms. Specifically, genes involved in wound response, hormonal regulation, musculoskeletal development, and the Wnt and MAPK/FGF pathways were differentially expressed along the regenerating tail axis. Furthermore, we identified 2 microRNA precursor families, 22 unclassified non-coding RNAs, and 3 novel protein-coding genes significantly enriched in the regenerating tail. However, high levels of progenitor/stem cell markers were not observed in any region of the regenerating tail. Furthermore, we observed multiple tissue-type specific clusters of proliferating cells along the regenerating tail, not localized to the tail tip. These findings predict a different mechanism of regeneration in the lizard than the blastema model described in the salamander and the zebrafish, which are anamniote vertebrates. Thus, lizard tail regrowth involves the activation of conserved developmental and wound response pathways, which are potential targets for regenerative medical therapies.


Asunto(s)
Lagartos/fisiología , Regeneración/genética , Cola (estructura animal)/fisiología , Cicatrización de Heridas/genética , Animales , Lagartos/genética , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA