Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Biol ; 19(2)2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34936999

RESUMEN

As cells move from two-dimensional surfaces into complex 3D environments, the nucleus becomes a barrier to movement due to its size and rigidity. Therefore, moving the nucleus is a key step in 3D cell migration. In this review, we discuss how coordination between cytoskeletal and nucleoskeletal networks is required to pull the nucleus forward through complex 3D spaces. We summarize recent migration models which utilize unique molecular crosstalk to drive nuclear migration through different 3D environments. In addition, we speculate about the role of proteins that indirectly crosslink cytoskeletal networks and the role of 3D focal adhesions and how these protein complexes may drive 3D nuclear migration.


Asunto(s)
Citoesqueleto , Adhesiones Focales , Transporte Biológico , Movimiento Celular , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo
2.
Phys Biol ; 18(6)2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34521072

RESUMEN

Cytoplasmic pressure, a function of actomyosin contractility and water flow, can regulate cellular morphology and dynamics. In mesenchymal cells, cytoplasmic pressure powers cell protrusion through physiological three-dimensional extracellular matrices. However, the role of intracellular pressure in epithelial cells is relatively unclear. Here we find that high cytoplasmic pressure is necessary to maintain barrier function, one of the hallmarks of epithelial homeostasis. Further, our data show that decreased cytoplasmic pressure facilitates lamellipodia formation during the epithelial to mesenchymal transition (EMT). Critically, activation of the actin nucleating protein Arp2/3 is required for the reduction in cytoplasmic pressure and lamellipodia formation in response to treatment with hepatocyte growth factor (HGF) to induce EMT. Thus, elevated cytoplasmic pressure functions to maintain epithelial tissue integrity, while reduced cytoplasmic pressure triggers lamellipodia formation and motility during HGF-dependent EMT.


Asunto(s)
Actinas , Transición Epitelial-Mesenquimal , Citoesqueleto de Actina , Actomiosina , Movimiento Celular
3.
Mol Biol Cell ; 33(12): ar104, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35857713

RESUMEN

Cells migrating through physiologically relevant three-dimensional (3D) substrates such as cell-derived matrix (CDM) use actomyosin and vimentin intermediate filaments to pull the nucleus forward and pressurize the front of the cell as part of the nuclear piston mechanism of 3D migration. In this study, we tested the role of the cytoskeleton cross-linking protein plectin in facilitating the movement of the nucleus through 3D matrices. We find that the interaction of F-actin and vimentin filaments in cells on 2D glass and in 3D CDM requires actomyosin contractility. Plectin also facilitated these interactions and interacts with vimentin in response to NMII contractility and substrate stiffness, suggesting that the association of plectin and vimentin is mechanosensitive. We find that this mechanosensitive plectin complex slows down 2D migration but is critical for pulling the nucleus forward and generating compartmentalized intracellular pressure in 3D CDM, as well as low-pressure lamellipodial migration in 3D collagen. Finally, plectin expression helped to polarize NMII to in front of the nucleus and to localize the vimentin network around the nucleus. Together, our data suggest that plectin cross-links vimentin and actomyosin filaments, organizes the vimentin network, and polarizes NMII to facilitate the nuclear piston mechanism of 3D cell migration.


Asunto(s)
Actinas , Plectina , Actinas/metabolismo , Actomiosina/metabolismo , Movimiento Celular/fisiología , Filamentos Intermedios/metabolismo , Plectina/metabolismo , Vimentina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA