Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 272
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(8): 105067, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37468099

RESUMEN

The DNA adduct 6-oxo-M1dG, (3-(2'-deoxy-ß-D-erythro-pentofuranosyl)-6-oxo-pyrimido(1,2alpha)purin-10(3H)-one) is formed in the genome via oxidation of the peroxidation-derived adduct M1dG. However, the effect of 6-oxo-M1dG adducts on subsequent DNA replication is unclear. Here we investigated the ability of the human Y-family polymerase hPol η to bypass 6-oxo-M1dG. Using steady-state kinetics and analysis of DNA extension products by liquid chromatography-tandem mass spectrometry, we found hPol η preferentially inserts a dAMP or dGMP nucleotide into primer-templates across from the 6-oxo-M1dG adduct, with dGMP being slightly preferred. We also show primer-templates with a 3'-terminal dGMP or dAMP across from 6-oxo-M1dG were extended to a greater degree than primers with a dCMP or dTMP across from the adduct. In addition, we explored the structural basis for bypass of 6-oxo-M1dG by hPol η using X-ray crystallography of both an insertion-stage and an extension-stage complex. In the insertion-stage complex, we observed that the incoming dCTP opposite 6-oxo-M1dG, although present during crystallization, was not present in the active site. We found the adduct does not interact with residues in the hPol η active site but rather forms stacking interactions with the base pair immediately 3' to the adduct. In the extension-stage complex, we observed the 3' hydroxyl group of the primer strand dGMP across from 6-oxo-M1dG is not positioned correctly to form a phosphodiester bond with the incoming dCTP. Taken together, these results indicate 6-oxo-M1dG forms a strong block to DNA replication by hPol η and provide a structural basis for its blocking ability.


Asunto(s)
Aductos de ADN , ADN Polimerasa Dirigida por ADN , Humanos , ADN Polimerasa Dirigida por ADN/metabolismo , ADN/química , Replicación del ADN
2.
Chem Res Toxicol ; 36(12): 1947-1960, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-37989274

RESUMEN

The genotoxic 3-(2-deoxy-ß-D-erythro-pentofuranosyl)pyrimido[1,2-α]purin-10(3H)-one (M1dG) DNA lesion arises from endogenous exposures to base propenals generated by oxidative damage and from exposures to malondialdehyde (MDA), produced by lipid peroxidation. Once formed, M1dG may oxidize, in vivo, to 3-(2-deoxy-ß-D-erythropentofuranosyl)-pyrimido[1,2-f]purine-6,10(3H,5H)-dione (6-oxo-M1dG). The latter blocks DNA replication and is a substrate for error-prone mutagenic bypass by the Y-family DNA polymerase hpol η. To examine structural consequences of 6-oxo-M1dG damage in DNA, we conducted NMR studies of 6-oxo-M1dG incorporated site-specifically into 5' -d(C1A2T3X4A5T6G7A8C9G10C11T12)-3':5'-d(A13G14C15G16T17C18A19T20C21A22T23G24)-3' (X = 6-oxo-M1dG). NMR spectra afforded detailed resonance assignments. Chemical shift analyses revealed that nucleobase C21, complementary to 6-oxo-M1dG, was deshielded compared with the unmodified duplex. Sequential NOEs between 6-oxo-M1dG and A5 were disrupted, as well as NOEs between T20 and C21 in the complementary strand. The structure of the 6-oxo-M1dG modified DNA duplex was refined by using molecular dynamics (rMD) calculations restrained by NOE data. It revealed that 6-oxo-M1dG intercalated into the duplex and remained in the anti-conformation about the glycosyl bond. The complementary cytosine C21 extruded into the major groove, accommodating the intercalated 6-oxo-M1dG. The 6-oxo-M1dG H7 and H8 protons faced toward the major groove, while the 6-oxo-M1dG imidazole proton H2 faced into the major groove. Structural perturbations to dsDNA were limited to the 6-oxo-M1dG damaged base pair and the flanking T3:A22 and A5:T20 base pairs. Both neighboring base pairs remained within the Watson-Crick hydrogen bonding contact. The 6-oxo-M1dG did not stack well with the 5'-neighboring base pair T3:A22 but showed improved stacking with the 3'-neighboring base pair A5:T20. Overall, the base-displaced intercalated structure was consistent with thermal destabilization of the 6-oxo-M1dG damaged DNA duplex; thermal melting temperature data showed a 15 °C decrease in Tm compared to the unmodified duplex. The structural consequences of 6-oxo-M1dG formation in DNA are evaluated in the context of the chemical biology of this lesion.


Asunto(s)
Aductos de ADN , ADN , ADN/química , Purinas/química , Daño del ADN , Conformación Molecular , Protones , Conformación de Ácido Nucleico , Desoxiguanosina/química
3.
Brain ; 145(1): 179-193, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35136958

RESUMEN

Traumatic brain injury is an important risk factor for development of Alzheimer's disease and dementia. Unfortunately, no effective therapies are currently available for prevention and treatment of the traumatic brain injury-induced Alzheimer's disease-like neurodegenerative disease. This is largely due to our limited understanding of the mechanisms underlying traumatic brain injury-induced neuropathology. Previous studies showed that pharmacological inhibition of monoacylglycerol lipase, a key enzyme degrading the endocannabinoid 2-arachidonoylglycerol, attenuates traumatic brain injury-induced neuropathology. However, the mechanism responsible for the neuroprotective effects produced by inhibition of monoacylglycerol lipase in traumatic brain injury remains unclear. Here we first show that genetic deletion of monoacylglycerol lipase reduces neuropathology and averts synaptic and cognitive declines in mice exposed to repeated mild closed head injury. Surprisingly, these neuroprotective effects result primarily from inhibition of 2-arachidonoylglycerol metabolism in astrocytes, rather than in neurons. Single-cell RNA-sequencing data reveal that astrocytic monoacylglycerol lipase knockout mice display greater resilience to traumatic brain injury-induced changes in expression of genes associated with inflammation or maintenance of brain homeostasis in astrocytes and microglia. The monoacylglycerol lipase inactivation-produced neuroprotection is abrogated by deletion of the cannabinoid receptor-1 or by adeno-associated virus vector-mediated silencing of astrocytic peroxisome proliferator-activated receptor-γ. This is further supported by the fact that overexpression of peroxisome proliferator-activated receptor-γ in astrocytes prevents traumatic brain injury-induced neuropathology and impairments in spatial learning and memory. Our results reveal a previously undefined cell type-specific role of 2-arachidonoylglycerol metabolism and signalling pathways in traumatic brain injury-induced neuropathology, suggesting that enhanced 2-arachidonoylglycerol signalling in astrocytes is responsible for the monoacylglycerol lipase inactivation-produced alleviation of neuropathology and deficits in synaptic and cognitive functions in traumatic brain injury.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Enfermedades Neurodegenerativas , Animales , Astrocitos/metabolismo , Lesiones Traumáticas del Encéfalo/metabolismo , Endocannabinoides/farmacología , Humanos , Ratones , Monoacilglicerol Lipasas/genética , Monoacilglicerol Lipasas/metabolismo , Enfermedades Neurodegenerativas/metabolismo
4.
Chem Rev ; 120(15): 7592-7641, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32609495

RESUMEN

Cyclooxgenases are key enzymes of lipid signaling. They carry out the first step in the production of prostaglandins, important mediators of inflammation, pain, cardiovascular disease, and cancer, and they are the molecular targets for nonsteroidal anti-inflammatory drugs, which are among the oldest and most chemically diverse set of drugs known. Homodimeric proteins that behave as allosterically modulated, functional heterodimers, the cyclooxygenases exhibit complex kinetic behavior, requiring peroxide-dependent activation and undergoing suicide inactivation. Due to their important physiological and pathophysiological roles and keen interest on the part of the pharmaceutical industry, the cyclooxygenases have been the focus of a vast array of structural studies, leading to the publication of over 80 crystal structures of the enzymes in complex with substrates or inhibitors supported by a wealth of functional data generated by site-directed mutation experiments. In this review, we explore the chemical biology of the cyclooxygenases through the lens of this wealth of structural and functional information. We identify key structural features of the cyclooxygenases, break down their active site into regional binding pockets to facilitate comparisons between structures, and explore similarities and differences in the binding modes of the wide variety of ligands (both substrates and inhibitors) that have been characterized in complex with the enzymes. Throughout, we correlate structure with function whenever possible. Finally, we summarize what can and cannot be learned from the currently available structural data and discuss the critical intriguing questions that remain despite the wealth of information that has been amassed in this field.


Asunto(s)
Antiinflamatorios no Esteroideos/química , Antiinflamatorios no Esteroideos/farmacología , Prostaglandina-Endoperóxido Sintasas/química , Prostaglandina-Endoperóxido Sintasas/metabolismo , Animales , Dominio Catalítico , Inhibidores de la Ciclooxigenasa/química , Inhibidores de la Ciclooxigenasa/farmacología , Humanos , Simulación de Dinámica Molecular , Relación Estructura-Actividad , Especificidad por Sustrato
5.
Addict Biol ; 27(4): e13183, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35754107

RESUMEN

Attenuating enzymatic degradation of endocannabinoids (eCBs) by fatty acid amide hydrolase (FAAH) reduces cannabis withdrawal symptoms in preclinical and clinical studies. In mice, blocking cyclooxygenase-2 (COX-2) activity increases central eCB levels by inhibiting fatty acid degradation. This placebo-controlled study examined the effects of the FDA-approved COX-2 selective inhibitor, celecoxib, on cannabis withdrawal, 'relapse', and circulating eCBs in a human laboratory model of cannabis use disorder. Daily, nontreatment-seeking cannabis smokers (12M, 3F) completed a crossover study comprising two 11-day study phases (separated by >14 days for medication clearance). In each phase, the effects of daily BID placebo (0 mg) or celecoxib (200 mg) on cannabis (5.3% THC) intoxication, withdrawal symptoms (4 days of inactive cannabis self-administration) and 'relapse' (3 days of active cannabis self-administration following abstinence) were assessed. Outcome measures included mood, cannabis self-administration, sleep, food intake, cognitive performance, tobacco cigarette use and circulating eCBs and related lipids. Under placebo maintenance, cannabis abstinence produced characteristic withdrawal symptoms (negative mood, anorexia and dreaming) relative to cannabis administration and was associated with increased OEA (a substrate of FAAH) and oleic acid (metabolite of OEA), with no change in eCB levels. Compared to placebo, celecoxib improved subjective (but not objective) measures of sleep and did not affect mood or plasma levels of eCBs or associated lipids and increased cannabis craving. The overall absence of effects on cannabis withdrawal symptoms, self-administration or circulating eCBs relative to placebo, combined with an increase in cannabis craving, suggests celecoxib does not show promise as a potential pharmacotherapy for CUD.


Asunto(s)
Cannabis , Abuso de Marihuana , Síndrome de Abstinencia a Sustancias , Agonistas de Receptores de Cannabinoides , Celecoxib/uso terapéutico , Estudios Cruzados , Ciclooxigenasa 2/uso terapéutico , Dronabinol , Endocannabinoides , Humanos , Abuso de Marihuana/psicología , Recurrencia , Fumadores , Síndrome de Abstinencia a Sustancias/tratamiento farmacológico , Síndrome de Abstinencia a Sustancias/psicología
6.
Gut ; 70(3): 555-566, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32641470

RESUMEN

OBJECTIVE: Patients with Lynch syndrome (LS) are at markedly increased risk for colorectal cancer. It is being increasingly recognised that the immune system plays an essential role in LS tumour development, thus making an ideal target for cancer prevention. Our objective was to evaluate the safety, assess the activity and discover novel molecular pathways involved in the activity of naproxen as primary and secondary chemoprevention in patients with LS. DESIGN: We conducted a Phase Ib, placebo-controlled, randomised clinical trial of two dose levels of naproxen sodium (440 and 220 mg) administered daily for 6 months to 80 participants with LS, and a co-clinical trial using a genetically engineered mouse model of LS and patient-derived organoids (PDOs). RESULTS: Overall, the total number of adverse events was not different across treatment arms with excellent tolerance of the intervention. The level of prostaglandin E2 in the colorectal mucosa was significantly decreased after treatment with naproxen when compared with placebo. Naproxen activated different resident immune cell types without any increase in lymphoid cellularity, and changed the expression patterns of the intestinal crypt towards epithelial differentiation and stem cell regulation. Naproxen demonstrated robust chemopreventive activity in a mouse co-clinical trial and gene expression profiles induced by naproxen in humans showed perfect discrimination of mice specimens with LS and PDOs treated with naproxen and control. CONCLUSIONS: Naproxen is a promising strategy for immune interception in LS. We have discovered naproxen-induced gene expression profiles for their potential use as predictive biomarkers of drug activity. TRIAL REGISTRATION NUMBER: gov Identifier: NCT02052908.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Quimioprevención , Neoplasias Colorrectales Hereditarias sin Poliposis/tratamiento farmacológico , Neoplasias Colorrectales Hereditarias sin Poliposis/inmunología , Naproxeno/farmacología , Adulto , Anciano , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Dinoprostona/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Mucosa Intestinal/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Naproxeno/administración & dosificación
7.
Chem Res Toxicol ; 34(12): 2567-2578, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34860508

RESUMEN

The lipid peroxidation product malondialdehyde and the DNA peroxidation product base-propenal react with dG to generate the exocyclic adduct, M1dG. This mutagenic lesion has been found in human genomic and mitochondrial DNA. M1dG in genomic DNA is enzymatically oxidized to 6-oxo-M1dG, a lesion of currently unknown mutagenic potential. Here, we report the synthesis of an oligonucleotide containing 6-oxo-M1dG and the results of extension experiments aimed at determining the effect of the 6-oxo-M1dG lesion on the activity of human polymerase iota (hPol ι). For this purpose, a liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay was developed to obtain reliable quantitative data on the utilization of poorly incorporated nucleotides. Results demonstrate that hPol ι primarily incorporates deoxycytidine triphosphate (dCTP) and thymidine triphosphate (dTTP) across from 6-oxo-M1dG with approximately equal efficiency, whereas deoxyadenosine triphosphate (dATP) and deoxyguanosine triphosphate (dGTP) are poor substrates. Following the incorporation of a single nucleotide opposite the lesion, 6-oxo-M1dG blocks further replication by the enzyme.


Asunto(s)
ADN Polimerasa Dirigida por ADN/metabolismo , Desoxiguanosina/metabolismo , Oligonucleótidos/metabolismo , Cromatografía Liquida , Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , Humanos , Estructura Molecular , Oligonucleótidos/síntesis química , Oligonucleótidos/química , Espectrometría de Masas en Tándem , ADN Polimerasa iota
8.
Proc Natl Acad Sci U S A ; 115(37): 9228-9233, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30150385

RESUMEN

Histone posttranslational modifications (PTMs) regulate chromatin dynamics, DNA accessibility, and transcription to expand the genetic code. Many of these PTMs are produced through cellular metabolism to offer both feedback and feedforward regulation. Herein we describe the existence of Lys and Arg modifications on histones by a glycolytic by-product, methylglyoxal (MGO). Our data demonstrate that adduction of histones by MGO is an abundant modification, present at the same order of magnitude as Arg methylation. These modifications were detected on all four core histones at critical residues involved in both nucleosome stability and reader domain binding. In addition, MGO treatment of cells lacking the major detoxifying enzyme, glyoxalase 1, results in marked disruption of H2B acetylation and ubiquitylation without affecting H2A, H3, and H4 modifications. Using RNA sequencing, we show that MGO is capable of altering gene transcription, most notably in cells lacking GLO1. Finally, we show that the deglycase DJ-1 protects histones from adduction by MGO. Collectively, our findings demonstrate the existence of a previously undetected histone modification derived from glycolysis, which may have far-reaching implications for the control of gene expression and protein transcription linked to metabolism.


Asunto(s)
Arginina/metabolismo , Histonas/metabolismo , Lactoilglutatión Liasa/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Piruvaldehído , Transcripción Genética/efectos de los fármacos , Células HEK293 , Humanos , Piruvaldehído/metabolismo , Piruvaldehído/farmacología
9.
J Biol Chem ; 294(22): 8690-8698, 2019 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-31000626

RESUMEN

Many indomethacin amides and esters are cyclooxygenase-2 (COX-2)-selective inhibitors, providing a framework for the design of COX-2-targeted imaging and cancer chemotherapeutic agents. Although previous studies have suggested that the amide or ester moiety of these inhibitors binds in the lobby region, a spacious alcove within the enzyme's membrane-binding domain, structural details have been lacking. Here, we present observations on the crystal complexes of COX-2 with two indomethacin-dansyl conjugates (compounds 1 and 2) at 2.22-Å resolution. Both compounds are COX-2-selective inhibitors with IC50 values of 0.76 and 0.17 µm, respectively. Our results confirmed that the dansyl moiety is localized in and establishes hydrophobic interactions and several hydrogen bonds with the lobby of the membrane-binding domain. We noted that in both crystal structures, the linker tethering indomethacin to the dansyl moiety passes through the constriction at the mouth of the COX-2 active site, resulting in displacement and disorder of Arg-120, located at the opening to the active site. Both compounds exhibited higher inhibitory potency against a COX-2 R120A variant than against the WT enzyme. Inhibition kinetics of compound 2 were similar to those of the indomethacin parent compound against WT COX-2, and the R120A substitution reduced the time dependence of COX inhibition. These results provide a structural basis for the further design and optimization of conjugated COX reagents for imaging of malignant or inflammatory tissues containing high COX-2 levels.


Asunto(s)
Dominio Catalítico , Membrana Celular/metabolismo , Ciclooxigenasa 2/química , Ciclooxigenasa 2/metabolismo , Compuestos de Dansilo/química , Indometacina/química , Animales , Inhibidores de la Ciclooxigenasa 2/química , Inhibidores de la Ciclooxigenasa 2/farmacología , Fluorescencia , Concentración 50 Inhibidora , Cinética , Ratones , Modelos Moleculares , Factores de Tiempo
10.
Nucleic Acids Res ; 46(7): 3458-3467, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29438559

RESUMEN

Reactive oxygen species (ROS) are formed in mitochondria during electron transport and energy generation. Elevated levels of ROS lead to increased amounts of mitochondrial DNA (mtDNA) damage. We report that levels of M1dG, a major endogenous peroxidation-derived DNA adduct, are 50-100-fold higher in mtDNA than in nuclear DNA in several different human cell lines. Treatment of cells with agents that either increase or decrease mitochondrial superoxide levels leads to increased or decreased levels of M1dG in mtDNA, respectively. Sequence analysis of adducted mtDNA suggests that M1dG residues are randomly distributed throughout the mitochondrial genome. Basal levels of M1dG in mtDNA from pulmonary microvascular endothelial cells (PMVECs) from transgenic bone morphogenetic protein receptor 2 mutant mice (BMPR2R899X) (four adducts per 106 dG) are twice as high as adduct levels in wild-type cells. A similar increase was observed in mtDNA from heterozygous null (BMPR2+/-) compared to wild-type PMVECs. Pulmonary arterial hypertension is observed in the presence of BMPR2 signaling disruptions, which are also associated with mitochondrial dysfunction and oxidant injury to endothelial tissue. Persistence of M1dG adducts in mtDNA could have implications for mutagenesis and mitochondrial gene expression, thereby contributing to the role of mitochondrial dysfunction in diseases.


Asunto(s)
ADN Mitocondrial/metabolismo , Mitocondrias/genética , Estrés Oxidativo/genética , Nucleósidos de Purina/metabolismo , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Aductos de ADN/genética , Aductos de ADN/metabolismo , ADN Mitocondrial/genética , Transporte de Electrón/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Regulación de la Expresión Génica/genética , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Peroxidación de Lípido/genética , Ratones , Ratones Transgénicos , Mitocondrias/patología , Mutagénesis/genética , Oxidantes/farmacología , Nucleósidos de Purina/biosíntesis , Especies Reactivas de Oxígeno/química , Superóxidos/metabolismo
11.
J Lipid Res ; 60(2): 360-374, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30482805

RESUMEN

Lysophospholipids (LysoPLs) are bioactive lipid species involved in cellular signaling processes and the regulation of cell membrane structure. LysoPLs are metabolized through the action of lysophospholipases, including lysophospholipase A1 (LYPLA1) and lysophospholipase A2 (LYPLA2). A new X-ray crystal structure of LYPLA2 compared with a previously published structure of LYPLA1 demonstrated near-identical folding of the two enzymes; however, LYPLA1 and LYPLA2 have displayed distinct substrate specificities in recombinant enzyme assays. To determine how these in vitro substrate preferences translate into a relevant cellular setting and better understand the enzymes' role in LysoPL metabolism, CRISPR-Cas9 technology was utilized to generate stable KOs of Lypla1 and/or Lypla2 in Neuro2a cells. Using these cellular models in combination with a targeted lipidomics approach, LysoPL levels were quantified and compared between cell lines to determine the effect of losing lysophospholipase activity on lipid metabolism. This work suggests that LYPLA1 and LYPLA2 are each able to account for the loss of the other to maintain lipid homeostasis in cells; however, when both are deleted, LysoPL levels are dramatically increased, causing phenotypic and morphological changes to the cells.


Asunto(s)
Homeostasis , Lisofosfolípidos/metabolismo , Transducción de Señal , Tioléster Hidrolasas/metabolismo , Secuencia de Aminoácidos , Diferenciación Celular , Línea Celular , Técnicas de Inactivación de Genes , Humanos , Hidrólisis , Modelos Moleculares , Neuronas/citología , Conformación Proteica , Tioléster Hidrolasas/química , Tioléster Hidrolasas/deficiencia , Tioléster Hidrolasas/genética
12.
J Biol Chem ; 293(9): 3028-3038, 2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29326169

RESUMEN

The cyclooxygenases COX-1 and COX-2 oxygenate arachidonic acid (AA) to prostaglandin H2 (PGH2). COX-2 also oxygenates the endocannabinoids 2-arachidonoylglycerol (2-AG) and arachidonoylethanolamide (AEA) to the corresponding PGH2 analogs. Both enzymes are targets of nonsteroidal anti-inflammatory drugs (NSAIDs), but NSAID-mediated COX inhibition is associated with gastrointestinal toxicity. One potential strategy to counter this toxicity is to also inhibit fatty acid amide hydrolase (FAAH), which hydrolyzes bioactive fatty acid ethanolamides (FAEs) into fatty acids and ethanolamine. Here, we investigated the mechanism of COX inhibition by ARN2508, an NSAID that inhibits both COXs and FAAH with high potency, target selectivity, and decreased gastrointestinal toxicity in mouse models, presumably due to its ability to increase levels of FAEs. A 2.27-Å-resolution X-ray crystal structure of the COX-2·(S)-ARN2508 complex reveals that ARN2508 adopts a binding pose similar to that of its parent NSAID flurbiprofen. However, ARN2508's alkyl tail is inserted deep into the top channel, an active site region not exploited by any previously reported NSAID. As for flurbiprofen, ARN2508's potency is highly dependent on the configuration of the α-methyl group. Thus, (S)-ARN2508 is more potent than (R)-ARN2508 for inhibition of AA oxygenation by both COXs and 2-AG oxygenation by COX-2. Also, similarly to (R)-flurbiprofen, (R)-ARN2508 exhibits substrate selectivity for inhibition of 2-AG oxygenation. Site-directed mutagenesis confirms the importance of insertion of the alkyl tail into the top channel for (S)-ARN2508's potency and suggests a role for Ser-530 as a determinant of the inhibitor's slow rate of inhibition compared with that of (S)-flurbiprofen.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/metabolismo , Dominio Catalítico , Inhibidores de la Ciclooxigenasa/metabolismo , Inhibidores de la Ciclooxigenasa/farmacología , Prostaglandina-Endoperóxido Sintasas/metabolismo , Inhibidores de la Ciclooxigenasa/química , Isoenzimas/antagonistas & inhibidores , Isoenzimas/química , Isoenzimas/metabolismo , Fenilcarbamatos/química , Fenilcarbamatos/metabolismo , Fenilcarbamatos/farmacología , Fenilpropionatos/química , Fenilpropionatos/metabolismo , Fenilpropionatos/farmacología , Prostaglandina-Endoperóxido Sintasas/química , Unión Proteica , Estereoisomerismo , Especificidad por Sustrato
13.
Adv Exp Med Biol ; 1161: 77-88, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31562623

RESUMEN

The Cyclooxygenase enzymes (COX-1 and COX-2) incorporate 2 molecules of O2 into arachidonic acid (AA), resulting in an array of bioactive prostaglandins. However, much work has been done showing that COX-2 will perform this reaction on several different AA-containing molecules, most importantly, the endocannabinoid 2-arachidonoylglycerol (2-AG). The products of 2-AG oxygenation, prostaglandin glycerol esters (PG-Gs), are analogous to canonical prostaglandins. This chapter reviews the literature detailing the production, metabolism, and bioactivity of these compounds, as well as their detection in intact animals.


Asunto(s)
Éteres de Glicerilo , Prostaglandinas , Animales , Ácidos Araquidónicos/metabolismo , Ciclooxigenasa 2/metabolismo , Endocannabinoides/metabolismo , Glicéridos/metabolismo , Éteres de Glicerilo/análisis , Éteres de Glicerilo/química , Éteres de Glicerilo/metabolismo , Prostaglandinas/análisis , Prostaglandinas/química , Prostaglandinas/metabolismo
14.
Proc Natl Acad Sci U S A ; 112(40): 12366-71, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26392530

RESUMEN

Cyclooxygenase-2 (COX-2) oxygenates arachidonic acid (AA) and its ester analog, 2-arachidonoylglycerol (2-AG), to prostaglandins (PGs) and prostaglandin glyceryl esters (PG-Gs), respectively. Although the efficiency of oxygenation of these substrates by COX-2 in vitro is similar, cellular biosynthesis of PGs far exceeds that of PG-Gs. Evidence that the COX enzymes are functional heterodimers suggests that competitive interaction of AA and 2-AG at the allosteric site of COX-2 might result in differential regulation of the oxygenation of the two substrates when both are present. Modulation of AA levels in RAW264.7 macrophages uncovered an inverse correlation between cellular AA levels and PG-G biosynthesis. In vitro kinetic analysis using purified protein demonstrated that the inhibition of 2-AG oxygenation by high concentrations of AA far exceeded the inhibition of AA oxygenation by high concentrations of 2-AG. An unbiased systems-based mechanistic model of the kinetic data revealed that binding of AA or 2-AG at the allosteric site of COX-2 results in a decreased catalytic efficiency of the enzyme toward 2-AG, whereas 2-AG binding at the allosteric site increases COX-2's efficiency toward AA. The results suggest that substrates interact with COX-2 via multiple potential complexes involving binding to both the catalytic and allosteric sites. Competition between AA and 2-AG for these sites, combined with differential allosteric modulation, gives rise to a complex interplay between the substrates, leading to preferential oxygenation of AA.


Asunto(s)
Ácido Araquidónico/metabolismo , Ácidos Araquidónicos/metabolismo , Ciclooxigenasa 2/metabolismo , Endocannabinoides/metabolismo , Glicéridos/metabolismo , Prostaglandinas/metabolismo , Algoritmos , Regulación Alostérica , Sitio Alostérico , Animales , Unión Competitiva , Dominio Catalítico , Línea Celular , Simulación por Computador , Ciclooxigenasa 2/química , Cinética , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Oxidación-Reducción , Unión Proteica , Multimerización de Proteína , Células Sf9 , Spodoptera , Especificidad por Sustrato , Zimosan/farmacología
15.
J Biol Chem ; 291(26): 13448-64, 2016 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-27129261

RESUMEN

Eicosanoids are important mediators of fever, pain, and inflammation that modulate cell signaling during acute and chronic disease. We show by using lipidomics that thrombin-activated human platelets generate a new type of eicosanoid that both stimulates and primes human neutrophil integrin (Mac-1) expression, in response to formylmethionylleucylphenylalanine. Detailed characterization proposes a dioxolane structure, 8-hydroxy-9,11-dioxolane eicosatetraenoic acid (dioxolane A3, DXA3). The lipid is generated in nanogram amounts by platelets from endogenous arachidonate during physiological activation, with inhibition by aspirin in vitro or in vivo, implicating cyclooxygenase-1 (COX). Pharmacological and genetic studies on human/murine platelets revealed that DXA3 formation requires protease-activated receptors 1 and 4, cytosolic phospholipase A2 (cPLA2), Src tyrosine kinases, p38 MAPK, phospholipase C, and intracellular calcium. From data generated by purified COX isoforms and chemical oxidation, we propose that DXA3 is generated by release of an intermediate from the active site followed by oxygenation at C8. In summary, a new neutrophil-activating platelet-derived lipid generated by COX-1 is presented that can activate or prime human neutrophils, suggesting a role in innate immunity and acute inflammation.


Asunto(s)
Plaquetas/enzimología , Ciclooxigenasa 1/metabolismo , Dioxolanos/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Activación Neutrófila/fisiología , Neutrófilos/metabolismo , Animales , Aspirina/farmacología , Plaquetas/inmunología , Ciclooxigenasa 1/inmunología , Dioxolanos/inmunología , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/fisiología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Antígeno de Macrófago-1/inmunología , Antígeno de Macrófago-1/metabolismo , Masculino , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Ratones , Activación Neutrófila/efectos de los fármacos , Neutrófilos/inmunología , Activación Plaquetaria/efectos de los fármacos , Activación Plaquetaria/fisiología
16.
Anal Chem ; 89(2): 1299-1306, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-27982582

RESUMEN

Post-translational modifications (PTMs) affect protein function, localization, and stability, yet very little is known about the ratios of these modifications. Here, we describe a novel method to quantitate and assess the relative stoichiometry of Lys and Arg modifications (QuARKMod) in complex biological settings. We demonstrate the versatility of this platform in monitoring recombinant protein modification of peptide substrates, PTMs of individual histones, and the relative abundance of these PTMs as a function of subcellular location. Lastly, we describe a product ion scanning technique that offers the potential to discover unexpected and possibly novel Lys and Arg modifications. In summary, this approach yields accurate quantitation and discovery of protein PTMs in complex biological systems without the requirement of high mass accuracy instrumentation.


Asunto(s)
Arginina/análisis , Cromatografía Líquida de Alta Presión/métodos , Histonas/química , Lisina/análisis , Péptidos/química , Procesamiento Proteico-Postraduccional , Espectrometría de Masas en Tándem/métodos , Células HEK293 , Humanos , Hidrólisis , Histona Demetilasas con Dominio de Jumonji/química , Proteínas Recombinantes/química
17.
Chem Res Toxicol ; 30(1): 376-387, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-27930886

RESUMEN

Bioactive electrophiles generated from the oxidation of endogenous and exogenous compounds are a contributing factor in numerous disease states. Their toxicity is largely attributed to the covalent modification of cellular nucleophiles, including protein and DNA. With regard to protein modification, the side-chains of Cys, His, Lys, and Arg residues are critical targets. This results in the generation of undesired protein post-translational modifications (PTMs) that can trigger dire cellular consequences. Notably, histones are Lys- and Arg-rich proteins, providing a fertile source for adduction by both exogenous and endogenous electrophiles. The regulation of histone PTMs plays a critical role in the regulation of chromatin structure and thus gene expression. This perspective focuses on the role of electrophilic protein adduction within the context of chromatin and its potential consequences on cellular law and order.


Asunto(s)
Histonas/metabolismo , Animales , ADN/metabolismo , Epigénesis Genética , Expresión Génica , Humanos , Unión Proteica , Procesamiento Proteico-Postraduccional
18.
Chem Res Toxicol ; 30(2): 635-641, 2017 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-27978618

RESUMEN

Rapidly proliferating cells require an increased rate of metabolism to allow for the production of nucleic acids, amino acids, and lipids. Pyruvate kinase catalyzes the final step in the glycolysis pathway, and different isoforms display vastly different catalytic efficiencies. The M2 isoform of pyruvate kinase (PKM2) is strongly expressed in cancer cells and contributes to aerobic glycolysis in what is commonly termed the Warburg effect. Here, we show that PKM2 is covalently modified by the lipid electrophiles 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE). HNE and ONE modify multiple sites on PKM2 in vitro, including Cys424 and His439, which play a role in protein-protein interactions and fructose 1,6-bis-phosphate binding, respectively. Modification of these sites results in a dose-dependent decrease in enzymatic activity. In addition, high concentrations of the electrophile, most notably in the case of ONE, result in substantial protein-protein cross-linking in vitro and in cells. Exposure of RKO cells to electrophiles results in modification of monomeric PKM2 in a dose-dependent manner. There is a concomitant decrease in PKM2 activity in cells upon ONE exposure, but not HNE exposure. Together, our data suggest that modification of PKM2 by certain electrophiles results in kinase inactivation.


Asunto(s)
Aldehídos/farmacología , Inhibidores Enzimáticos/farmacología , Cetonas/farmacología , Piruvato Quinasa/antagonistas & inhibidores , Línea Celular Tumoral , Cromatografía Liquida , Química Clic , Humanos , Piruvato Quinasa/metabolismo , Espectrometría de Masas en Tándem
19.
FASEB J ; 30(1): 394-404, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26420849

RESUMEN

A polypharmacologic approach to prostanoid based anti-inflammatory therapeutics was undertaken in order to exploit both the anti- and proinflammatory properties attributed to the various prostanoid receptors. Multitargeting of selected prostanoid receptors yielded a prototype compound, compound 1 (AGN 211377), that antagonizes prostaglandin D2 receptors (DPs) DP1 (49) and DP2 (558), prostaglandin E2 receptors (EPs) EP1 (266) and EP4 (117), prostaglandin F2α receptor (FP) (61), and thromboxane A2 receptor (TP) (11) while sparing EP2, EP3, and prostaglandin I2 receptors (IPs); Kb values (in nanomoles) are given in parentheses. Compound 1 evoked a pronounced inhibition of cytokine/chemokine secretion from lipopolysaccharide or TNF-α stimulated primary human macrophages. These cytokine/chemokines included cluster of designation 40 receptor (CD40), epithelial-derived neutrophil-activating protein 78 (ENA-78), granulocyte colony stimulating factor (G-CSF), granulocyte macrophage colony stimulating factor (GM-CSF), IL-8, IL-18, monocyte chemotactic protein-1 (CCL2) (MCP-1), tissue plasminogen activator inhibitor (PAI-1), and regulated on activation, normal T cell expressed and secreted (RANTES). In contrast, the inhibitory effects of most antagonists selective for a single receptor were modest or absent, and selective EP2 receptor blockade increased cytokine release in some instances. Compound 1 also showed clear superiority to the cyclooxygenase inhibitors diclofenac and rofecoxib. These findings reveal that blockade of multiple prostanoid receptors, with absent antagonism of EP2 and IP, may provide more effective anti-inflammatory activity than global suppression of prostanoid synthesis or highly selective prostanoid receptor blockade. These investigations demonstrate the first working example of prostanoid receptor polypharmacology for potentially safer and more effective anti-inflammatory therapeutics by blocking multiple proinflammatory receptors while sparing those with anti-inflammatory activity.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Cinamatos/farmacología , Macrófagos/efectos de los fármacos , Receptores de Prostaglandina/antagonistas & inhibidores , Receptores de Tromboxanos/antagonistas & inhibidores , Antiinflamatorios no Esteroideos/síntesis química , Compuestos Bicíclicos Heterocíclicos con Puentes/síntesis química , Células Cultivadas , Cinamatos/síntesis química , Humanos , Macrófagos/metabolismo , Especificidad por Sustrato
20.
Nucleic Acids Res ; 43(11): 5489-500, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-25837992

RESUMEN

Etheno DNA adducts are a prevalent type of DNA damage caused by vinyl chloride (VC) exposure and oxidative stress. Etheno adducts are mutagenic and may contribute to the initiation of several pathologies; thus, elucidating the pathways by which they induce cellular transformation is critical. Although N(2),3-ethenoguanine (N(2),3-εG) is the most abundant etheno adduct, its biological consequences have not been well characterized in cells due to its labile glycosidic bond. Here, a stabilized 2'-fluoro-2'-deoxyribose analog of N(2),3-εG was used to quantify directly its genotoxicity and mutagenicity. A multiplex method involving next-generation sequencing enabled a large-scale in vivo analysis, in which both N(2),3-εG and its isomer 1,N(2)-ethenoguanine (1,N(2)-εG) were evaluated in various repair and replication backgrounds. We found that N(2),3-εG potently induces G to A transitions, the same mutation previously observed in VC-associated tumors. By contrast, 1,N(2)-εG induces various substitutions and frameshifts. We also found that N(2),3-εG is the only etheno lesion that cannot be repaired by AlkB, which partially explains its persistence. Both εG lesions are strong replication blocks and DinB, a translesion polymerase, facilitates the mutagenic bypass of both lesions. Collectively, our results indicate that N(2),3-εG is a biologically important lesion and may have a functional role in VC-induced or inflammation-driven carcinogenesis.


Asunto(s)
Daño del ADN , Guanina/análogos & derivados , Mutación , Aductos de ADN/química , ADN Polimerasa beta/metabolismo , Reparación del ADN , Enzimas Reparadoras del ADN/metabolismo , Dioxigenasas/metabolismo , Guanina/química , Secuenciación de Nucleótidos de Alto Rendimiento , Mutagénesis , Análisis de Secuencia de ADN , Eliminación de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA