Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Proc Natl Acad Sci U S A ; 114(5): E869-E878, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28096388

RESUMEN

Voltage-gated potassium 7.1 (Kv7.1) channel and KCNE1 protein coassembly forms the slow potassium current IKS that repolarizes the cardiac action potential. The physiological importance of the IKS channel is underscored by the existence of mutations in human Kv7.1 and KCNE1 genes, which cause cardiac arrhythmias, such as the long-QT syndrome (LQT) and atrial fibrillation. The proximal Kv7.1 C terminus (CT) binds calmodulin (CaM) and phosphatidylinositol-4,5-bisphosphate (PIP2), but the role of CaM in channel function is still unclear, and its possible interaction with PIP2 is unknown. Our recent crystallographic study showed that CaM embraces helices A and B with the apo C lobe and calcified N lobe, respectively. Here, we reveal the competition of PIP2 and the calcified CaM N lobe to a previously unidentified site in Kv7.1 helix B, also known to harbor an LQT mutation. Protein pulldown, molecular docking, molecular dynamics simulations, and patch-clamp recordings indicate that residues K526 and K527 in Kv7.1 helix B form a critical site where CaM competes with PIP2 to stabilize the channel open state. Data indicate that both PIP2 and Ca2+-CaM perform the same function on IKS channel gating by producing a left shift in the voltage dependence of activation. The LQT mutant K526E revealed a severely impaired channel function with a right shift in the voltage dependence of activation, a reduced current density, and insensitivity to gating modulation by Ca2+-CaM. The results suggest that, after receptor-mediated PIP2 depletion and increased cytosolic Ca2+, calcified CaM N lobe interacts with helix B in place of PIP2 to limit excessive IKS current inhibition.


Asunto(s)
Calmodulina/metabolismo , Síndrome de QT Prolongado/genética , Fosfatidilinositol 4,5-Difosfato/metabolismo , Canales de Potasio de la Superfamilia Shaker/metabolismo , Animales , Sitios de Unión , Unión Competitiva , Células CHO , Señalización del Calcio , Calmodulina/química , Cricetinae , Cricetulus , Humanos , Proteínas Inmovilizadas , Modelos Moleculares , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutación , Mutación Puntual , Potasio/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Conformación Proteica , Dominios Proteicos , Proteínas Recombinantes/metabolismo , Canales de Potasio de la Superfamilia Shaker/química , Canales de Potasio de la Superfamilia Shaker/genética , Espectrometría de Fluorescencia
2.
Mol Pharmacol ; 96(5): 580-588, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31427399

RESUMEN

Geranylgeranyl diphosphate synthase (GGPPS) is a central metalloenzyme in the mevalonate pathway, crucial for the prenylation of small GTPases. As small GTPases are pivotal for cellular survival, GGPPS was highlighted as a potential target for treating human diseases, including solid and hematologic malignancies and parasitic infections. Most available GGPPS inhibitors are bisphosphonates, but the clinically available compounds demonstrate poor pharmacokinetic properties. Although the design of novel bisphosphonates with improved physicochemical properties is highly desirable, the structure of wild-type human GGPPS (hGGPPS) bound to a bisphosphonate has not been resolved. Moreover, various metal-bisphosphonate-binding stoichiometries were previously reported in structures of yeast GGPPS (yGGPPS), hampering computational drug design with metal-binding pharmacophores (MBP). In this study, we report the 2.2 Å crystal structure of hGGPPS in complex with ibandronate, clearly depicting the involvement of three Mg2+ ions in bisphosphonate-protein interactions. Using drug-binding assays and computational docking, we show that the assignment of three Mg2+ ions to the binding site of both hGGPPS and yGGPPS greatly improves the correlation between calculated binding energies and experimentally measured affinities. This work provides a structural basis for future rational design of additional MBP-harboring drugs targeting hGGPPS. SIGNIFICANCE STATEMENT: Bisphosphonates are inhibitors of geranylgeranyl diphosphate synthase (GGPPS), a metalloenzyme crucial for cell survival. Bisphosphonate binding depends on coordination by Mg2+ ions, but various Mg2+-bisphosphonate-binding stoichiometries were previously reported. In this study, we show that three Mg2+ ions are vital for drug binding and provide a structural basis for future computational design of GGPPS inhibitors.


Asunto(s)
Cristalografía por Rayos X/métodos , Dimetilaliltranstransferasa/metabolismo , Difosfonatos/metabolismo , Farnesiltransferasa/metabolismo , Geraniltranstransferasa/metabolismo , Magnesio/metabolismo , Simulación del Acoplamiento Molecular/métodos , Sitios de Unión/fisiología , Dimetilaliltranstransferasa/química , Difosfonatos/química , Farnesiltransferasa/química , Geraniltranstransferasa/química , Humanos , Magnesio/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
3.
Mol Pharmacol ; 94(6): 1391-1400, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30275041

RESUMEN

Bisphosphonates are widely used for treating osteoporosis, a common disorder in which bone strength is reduced, increasing the risk for fractures. Rarely, bisphosphonates can paradoxically lead to atypical fractures occurring spontaneously or with trivial trauma. Recently, a novel missense mutation (D188Y) in the GGPS1 gene, encoding for geranylgeranyl diphosphate synthase (GGPPS), was associated with bisphosphonate-induced atypical fractures. However, the molecular basis for GGPPS involvement in this devastating condition remains elusive. Here, we show that while maintaining an overall unperturbed global enzyme structure, the D188Y mutation leads to ∼4-fold catalytic activity decrease. Furthermore, GGPPS-D188Y is unable to support cross-species complementation, highlighting the functional significance of the reduced catalytic activity observed in vitro. We next determined the crystal structure of apo-GGPPS-D188Y, revealing that while Y188 does not alter the protein fold, its bulky side chain sterically interferes with substrate binding. In agreement, we show that GGPPS-D188Y exhibits ∼3-fold reduction in the binding affinity of zoledronate, a commonly used bisphosphonate. However, inhibition of the mutated enzyme by zoledronate, in pharmacologically relevant concentrations, is maintained. Finally, we determined the crystal structure of zoledronate-bound GGPPS-D188Y, revealing large ligand-induced binding pocket rearrangements, revising the previous model for GGPPS-bisphosphonate interactions. In conclusion, we propose that among heterozygotes residual GGPPS activity is sufficient to support physiologic cellular function, concealing any pathologic phenotype. However, under bisphosphonate treatment, GGPPS activity is reduced below a crucial threshold for osteoclast function, leading to impaired bone remodeling and increased susceptibility to atypical fractures.


Asunto(s)
Difosfonatos/efectos adversos , Farnesiltransferasa/genética , Fracturas Óseas/inducido químicamente , Fracturas Óseas/genética , Cristalografía por Rayos X/métodos , Dimetilaliltranstransferasa/genética , Heterocigoto , Humanos , Modelos Moleculares , Mutación Missense/genética , Ácido Zoledrónico/farmacología
4.
J Biol Chem ; 286(51): 43809-43815, 2011 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-21969381

RESUMEN

Precursor proteins that are imported from the cytosol into the matrix of mitochondria carry positively charged amphipathic presequences and cross the inner membrane with the help of vital components of the TIM23 complex. It is currently unclear which subunits of the TIM23 complex recognize and directly bind to presequences. Here we analyzed the binding of presequence peptides to purified components of the TIM23 complex. The interaction of three different presequences with purified soluble domains of yeast Tim50 (Tim50IMS), Tim23 (Tim23IMS), and full-length Tim44 was examined. Using chemical cross-linking and surface plasmon resonance we demonstrate, for the first time, the ability of purified Tim50IMS and Tim44 to interact directly with the yeast Hsp60 presequence. We also analyzed their interaction with presequences derived from precursors of yeast mitochondrial 70-kDa heat shock protein (mHsp70) and of bovine cytochrome P450SCC. Moreover, we characterized the nature of the interactions and determined their KDs. On the basis of our results, we suggest a mechanism of translocation where stronger interactions of the presequences on the trans side of the channel support the import of precursor proteins through TIM23 into the matrix.


Asunto(s)
Proteínas de Transporte de Membrana/química , Membranas Mitocondriales/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Animales , Sitios de Unión , Biofisica/métodos , Biotina/química , Bovinos , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/química , Reactivos de Enlaces Cruzados/química , Cinética , Mitocondrias/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Péptidos/química , Unión Proteica , Estructura Terciaria de Proteína , Resonancia por Plasmón de Superficie
5.
Biochim Biophys Acta ; 1808(3): 990-1001, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20646995

RESUMEN

In order to reach the final place of their function, approximately half of the proteins in any eukaryotic cell have to be transported across or into one of the membranes in the cell. In this article, we present an overview of our current knowledge concerning the structural properties of the TIM23 complex and their relationship with the molecular mechanism of protein transport across the mitochondrial inner membrane. This article is part of a Special Issue entitled Protein translocation across or insertion into membranes.


Asunto(s)
Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Animales , Humanos , Transporte de Proteínas
6.
Biochemistry ; 48(47): 11185-95, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-19863062

RESUMEN

The translocation of proteins from the cytosol into the mitochondrial matrix is mediated by the coordinated action of the TOM complex in the outer membrane, as well as the TIM23 complex and its associated protein import motor in the inner membrane. The focus of this work is the peripheral inner membrane protein Tim44. Tim44 is a vital component of the mitochondrial protein translocation motor that anchors components of the motor to the TIM23 complex. For this purpose, Tim44 associates with the import channel by direct interaction with the Tim23 protein. Additionally, it was shown in vitro that Tim44 associates with acidic model membranes, in particular those containing cardiolipin. The latter interaction was shown to be mediated by the carboxy-terminal domain of Tim44 [Weiss, C., et al. (1999) Proc. Natl. Acad. Sci. U.S.A. 96, 8890-8894]. The aim of this study was to determine the precise recognition site for negative lipids in the C-terminal domain of Tim44. In particular, we wanted to examine the recently suggested hypothesis that acidic phospholipids associate with Tim44 via a hydrophobic cavity that is observed in the high-resolution structure of the C-terminal domain of the protein [Josyula, R., et al. (2006) J. Mol. Biol. 359, 798-804]. Molecular dynamics simulations suggest that (i) the hydrophobic tail of lipids may interact with Tim44 via the latter's hydrophobic cavity and (ii) a region, located in the N-terminal alpha-helix of the C-terminal domain (helices A1 and A2), may serve as a membrane attachment site. To validate this assumption, N-terminal truncations of yeast Tim44 were examined for their ability to bind cardiolipin-containing phospholipid vesicles. The results indicate that removal of the N-terminal alpha-helix (helix A1) abolishes the capacity of Tim44 to associate with cardiolipin-containing liposomes. We suggest that helices A1 and A2, in Tim44, jointly promote the association of the protein with acidic phospholipids.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Fosfolípidos/metabolismo , Transporte de Proteínas/fisiología , Secuencia de Bases , Cardiolipinas/química , Cardiolipinas/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Liposomas/química , Liposomas/metabolismo , Proteínas de la Membrana , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales , Fosfolípidos/química , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Electricidad Estática
7.
Int J Mol Sci ; 10(5): 2041-2053, 2009 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-19564938

RESUMEN

Most of our knowledge regarding the process of protein import into mitochondria has come from research employing Saccharomyces cerevisiae as a model system. Recently, several mammalian homologues of the mitochondrial motor proteins were identified. Of particular interest for us is the human Tim14/Pam18-Tim16/Pam16 complex. We chose a structural approach in order to examine the evolutionary conservation between yeast Tim14/Pam18-Tim16/Pam16 proteins and their human homologues. For this purpose, we examined the structural properties of the purified human proteins and their interaction with their yeast homologues, in vitro. Our results show that the soluble domains of the human Tim14/Pam18 and Tim16/Pam16 proteins interact with their yeast counterparts, forming heterodimeric complexes and that these complexes interact with yeast mtHsp70.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mitocondriales/farmacocinética , Proteínas de Saccharomyces cerevisiae/metabolismo , Humanos , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Estructura Secundaria de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo
8.
PLoS One ; 14(2): e0211901, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30735520

RESUMEN

Mutations in the SCN1A gene, which encodes for the voltage-gated sodium channel NaV1.1, cause Dravet syndrome, a severe developmental and epileptic encephalopathy. Genetic testing of this gene is recommended early in life. However, predicting the outcome of de novo missense SCN1A mutations is difficult, since milder epileptic syndromes may also be associated. In this study, we correlated clinical severity with functional in vitro electrophysiological testing of channel activity and bioinformatics prediction of damaging mutational effects. Three patients, bearing the mutations p.Gly177Ala, p.Ser259Arg and p.Glu1923Arg, showed frequent intractable seizures that had started early in life, with cognitive and behavioral deterioration, consistent with classical Dravet phenotypes. These mutations failed to produce measurable sodium currents in a mammalian expression system, indicating complete loss of channel function. A fourth patient, who harbored the mutation p.Met1267Ile, though presenting with seizures early in life, showed lower seizure burden and higher cognitive function, matching borderland Dravet phenotypes. In correlation with this, functional analysis demonstrated the presence of sodium currents, but with partial loss of function. In contrast, six bioinformatics tools for predicting mutational pathogenicity suggested similar impact for all mutations. Likewise, homology modeling of the secondary and tertiary structures failed to reveal misfolding. In conclusion, functional studies using patch clamp are suggested as a prognostic tool, whereby detectable currents imply milder phenotypes and absence of currents indicate an unfavorable prognosis. Future development of automated patch clamp systems will facilitate the inclusion of such functional testing as part of personalized patient diagnostic schemes.


Asunto(s)
Disfunción Cognitiva/diagnóstico , Epilepsias Mioclónicas/diagnóstico , Predisposición Genética a la Enfermedad , Mutación Missense , Canal de Sodio Activado por Voltaje NAV1.1/genética , Potenciales de Acción , Sustitución de Aminoácidos , Niño , Preescolar , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/fisiopatología , Biología Computacional/métodos , Diagnóstico Precoz , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/metabolismo , Epilepsias Mioclónicas/fisiopatología , Femenino , Expresión Génica , Células HEK293 , Humanos , Transporte Iónico , Masculino , Canal de Sodio Activado por Voltaje NAV1.1/química , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Técnicas de Placa-Clamp , Medicina de Precisión , Pronóstico , Índice de Severidad de la Enfermedad , Homología Estructural de Proteína , Transfección
9.
Sci Rep ; 8(1): 6882, 2018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29720717

RESUMEN

Chloride intracellular channels (CLICs) are a family of unique proteins, that were suggested to adopt both soluble and membrane-associated forms. Moreover, following this unusual metamorphic change, CLICs were shown to incorporate into membranes and mediate ion conduction in vitro, suggesting multimerization upon membrane insertion. Here, we present a 1.8 Å resolution crystal structure of the CLIC domain of mouse CLIC6 (mCLIC6). The structure reveals a monomeric arrangement and shows a high degree of structural conservation with other CLICs. Small-angle X-ray scattering (SAXS) analysis of mCLIC6 demonstrated that the overall solution structure is similar to the crystallographic conformation. Strikingly, further analysis of the SAXS data using ensemble optimization method unveiled additional elongated conformations, elucidating high structural plasticity as an inherent property of the protein. Moreover, structure-guided perturbation of the inter-domain interface by mutagenesis resulted in a population shift towards elongated conformations of mCLIC6. Additionally, we demonstrate that oxidative conditions induce an increase in mCLIC6 hydrophobicity along with mild oligomerization, which was enhanced by the presence of membrane mimetics. Together, these results provide mechanistic insights into the metamorphic nature of mCLIC6.


Asunto(s)
Canales de Cloruro/química , Animales , Cristalografía por Rayos X , Ratones , Simulación de Dinámica Molecular , Dominios Proteicos , Dispersión del Ángulo Pequeño , Difracción de Rayos X
10.
Protein Sci ; 16(2): 316-22, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17242434

RESUMEN

The vast majority of mitochondrial proteins are imported from the cytosol. For matrix-localized proteins, the final step of translocation across the inner membrane is mediated by the mitochondrial translocation motor, of which mhsp70 is a key component. The ATP-dependent function of mhsp70 is regulated by a complex, composed of a J-protein (called Pam18 or Tim14) and a J-like protein (called Pam16 or Tim16), and the nucleotide exchange factor Mge1. In this study, we investigated the structural properties of a recombinant purified Pam18/Tim14-Pam16/Tim16 complex using cross-linking with the bifunctional reagent DSS and CD-spectroscopy. The results of the study show that both Pam18/Tim14 and Pam16/Tim16 are thermally unstable proteins that unfold at very low temperatures (T(m) values of 16.5 degrees C and 29 degrees C, respectively). Upon mixing the proteins in vitro, or when both proteins are co-overexpressed in bacteria, Pam18/Tim14 and Pam16/Tim16 form a heterodimer that is thermally more stable than the individual proteins (T(m) = 41 degrees C). Analysis of the properties of the complex in GdnHCl shows that dissociation of the heterodimer is the limiting step in achieving full denaturation.


Asunto(s)
Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Dicroismo Circular , Clonación Molecular , Dimerización , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Termodinámica
11.
Elife ; 62017 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-28165323

RESUMEN

The majority of mitochondrial proteins use N-terminal presequences for targeting to mitochondria and are translocated by the presequence translocase. During translocation, proteins, threaded through the channel in the inner membrane, are handed over to the import motor at the matrix face. Tim17 is an essential, membrane-embedded subunit of the translocase; however, its function is only poorly understood. Here, we functionally dissected its four predicted transmembrane (TM) segments. Mutations in TM1 and TM2 impaired the interaction of Tim17 with Tim23, component of the translocation channel, whereas mutations in TM3 compromised binding of the import motor. We identified residues in the matrix-facing region of Tim17 involved in binding of the import motor. Our results reveal functionally distinct roles of different regions of Tim17 and suggest how they may be involved in handing over the proteins, during their translocation into mitochondria, from the channel to the import motor of the presequence translocase.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas Mutantes/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis Mutacional de ADN , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Modelos Biológicos , Modelos Químicos , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas de Saccharomyces cerevisiae/genética
12.
Channels (Austin) ; 11(6): 686-695, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-28976808

RESUMEN

In the heart, co-assembly of Kv7.1 with KCNE1 produces the slow IKS potassium current, which repolarizes the cardiac action potential and mutations in human Kv7.1 and KCNE1 genes cause cardiac arrhythmias. The proximal Kv7.1 C-terminus binds calmodulin (CaM) and phosphatidylinositol-4,5-bisphosphate (PIP2) and recently we revealed the competition of PIP2 with the calcified CaM N-lobe to a previously unidentified site in Kv7.1 helix B, also known to harbor a LQT mutation. Data indicated that PIP2 and Ca2+-CaM perform the same function on IKS channel gating to stabilize the channel open state. Here we show that similar features were observed for Kv7.1 currents expressed alone. We also find that conservation of homologous residues in helix B of other Kv7 subtypes confer similar competition of Ca2+-CaM with PIP2 binding to their proximal C-termini and suggest that PIP2-CaM interactions converge to Kv7 helix B to modulates channel activity in a Kv7 subtype-dependent manner.


Asunto(s)
Calcio/química , Calmodulina/metabolismo , Canal de Potasio KCNQ1/química , Canal de Potasio KCNQ1/metabolismo , Fosfatidilinositol 4,5-Difosfato/química , Fosfatidilinositol 4,5-Difosfato/metabolismo , Animales , Células CHO , Células Cultivadas , Cricetulus , Humanos
13.
FEBS J ; 282(11): 2178-86, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25765297

RESUMEN

Approximately 99% of the mitochondrial proteome is nucleus-encoded, synthesized in the cytosol, and subsequently imported into and sorted to the correct compartment in the organelle. The translocase of the inner mitochondrial membrane 23 (TIM23) complex is the major protein translocase of the inner membrane, and is responsible for translocation of proteins across the inner membrane and their insertion into the inner membrane. Tim23 is the central component of the complex that forms the import channel. A high-resolution structure of the import channel is still missing, and structural elements important for its function are unknown. In the present study, we analyzed the importance of the highly abundant GxxxG motifs in the transmembrane segments of Tim23 for the structural integrity of the TIM23 complex. Of 10 glycines present in the GxxxG motifs in the first, second and third transmembrane segments of Tim23, mutations of three of them in transmembrane segments 1 and 2 resulted in a lethal phenotype, and mutations of three others in a temperature-sensitive phenotype. The remaining four caused no obvious growth phenotype. Importantly, none of the mutations impaired the import and membrane integration of Tim23 precursor into mitochondria. However, the severity of growth impairment correlated with the destabilization of the TIM23 complex. We conclude that the GxxxG motifs found in the first and second transmembrane segments of Tim23 are necessary for the structural integrity of the TIM23 complex.


Asunto(s)
Proteínas de Transporte de Membrana/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Secuencias de Aminoácidos , Proteínas de Transporte de Membrana/química , Mitocondrias/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Unión Proteica , Estabilidad Proteica , Estructura Secundaria de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química
14.
Methods Mol Biol ; 1033: 147-55, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23996176

RESUMEN

The interaction of proteins with biological membranes is a key factor in their biogenesis and proper function. Hence, unraveling the properties of this interaction is very important and constitutes an essential step in deciphering the structural and functional characteristics of a membrane protein. Here we describe the use of cardiolipin-containing liposomes to analyze the interaction of the import protein Tim44 with the inner mitochondrial membrane. Using this system we showed that Tim44 is peripherally attached to the membrane and we detected the membrane binding site of the protein. The cardiolipin-containing liposomes serve as an excellent in vitro model system to the inner mitochondrial membrane and thus provide a good tool to analyze the interaction of various mitochondrial proteins with the inner membrane.


Asunto(s)
Cardiolipinas/química , Liposomas/química , Proteínas de la Membrana/metabolismo , Membranas Mitocondriales/metabolismo , Transporte Biológico , Cardiolipinas/metabolismo , Fosfolípidos/química , Unión Proteica
15.
J Biol Chem ; 282(47): 33935-42, 2007 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-17881357

RESUMEN

The final step of protein translocation across the mitochondrial inner membrane is mediated by a translocation motor composed of 1) the matrix-localized, ATP-hydrolyzing, 70-kDa heat shock protein mHsp70; 2) its anchor to the import channel, Tim44; 3) the nucleotide exchange factor Mge1; and 4) a J-domain-containing complex of co-chaperones, Tim14/Pam18-Tim16/Pam16. Despite its essential role in the biogenesis of mitochondria, the mechanism by which the translocation motor functions is still largely unknown. The goal of this work was to carry out a structure-function analysis of the mitochondrial translocation motor utilizing purified components, with an emphasis on the formation of the Tim44-mHsp70 complex. To this end, we purified Tim44 and monitored its interaction with other components of the motor using cross-linking with bifunctional reagents. The effects of nucleotides, the J-domain-containing components, and the P5 peptide (CALLSAPRR, representing part of the mitochondrial targeting signal of aspartate aminotransferase) on the formation of the translocation motor were examined. Our results show that only the peptide and nucleotides, but not J-domain-containing proteins, affect the Tim44-mHsp70 interaction. Additionally, binding of Tim44 to mHsp70 prevents the formation of a complex between the latter and Tim14/Pam18-Tim16/Pam16. Thus, mutually exclusive interactions between various components of the motor with mHsp70 regulate its functional cycle. The results are discussed in light of known models for the function of the mitochondrial translocation motor.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas HSP70 de Choque Térmico/química , Proteínas HSP70 de Choque Térmico/aislamiento & purificación , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/aislamiento & purificación , Proteínas de Transporte de Membrana/química , Proteínas de Transporte de Membrana/aislamiento & purificación , Mitocondrias/química , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/aislamiento & purificación , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Modelos Biológicos , Chaperonas Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/aislamiento & purificación , Complejos Multiproteicos/metabolismo , Nucleótidos/química , Nucleótidos/metabolismo , Péptidos/química , Péptidos/metabolismo , Unión Proteica/fisiología , Transporte de Proteínas/fisiología , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA