Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38843440

RESUMEN

Pulmonary fibrosis can be a fatal disease characterized by progressive lung scarring. It is still poorly understood how the pulmonary endothelium is involved in the disease pathogenesis. Differences of the pulmonary vasculature between patients and donors were analysed using transmission electron microscopy, immunohistochemistry and single-cell-RNA-sequencing. Vascular barrier resistance, endothelial-immune cell adhesion, and sensitivity to an inflammatory milieu were studied in-vitro. Integrity and activation markers were measured by ELISA in human plasma. Transmission electron microscopy demonstrated abnormally swollen endothelial cells in fibrotic lungs as compared to donors. A more intense CD31 and vWF and patchy VE-Cadherin staining in fibrotic lungs supported the presence of a dysregulated endothelium. Integrity markers CD31, VE-Cadherin, Thrombomodulin and VEGFR-2 and activation marker von-Willebrand-Factor gene expression was increased in different endothelial subpopulations (e.g. arterial, venous, gCap, aCap) in pulmonary fibrosis. This was associated with a heightened sensitivity of fibrotic endothelial cells to TNF-α or IFN-γ and elevated immune cell adhesion. The barrier strength was overall reduced in endothelial cells from fibrotic lungs. vWF and IL-8 were increased in the plasma of patients, while VE-Cadherin, Thrombomodulin and VEGFR-2 were decreased. VE-Cadherin staining was also patchy in biopsy tissue and was decreased in plasma samples of PF patients six months after the initial diagnosis. Our data demonstrate highly abnormal endothelial cells in PF. The vascular compartment is characterized by hyper-activation and increased immune cell adhesion, as well as dysfunctional endothelial barrier function. Re-establishing endothelial cell homeostasis and function might represent a new therapeutic option for fibrotic lung diseases.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38771138

RESUMEN

Changes in the extracellular matrix of pulmonary arteries (PAs) are a key aspect of vascular remodelling in pulmonary hypertension (PH). Yet, our understanding of the alterations affecting the proteoglycan (PG) family remains limited. We sought to investigate the expression and spatial distribution of major vascular PGs in PAs from healthy individuals and various PH groups (chronic obstructive pulmonary disease: PH-COPD, pulmonary fibrosis: PH-PF, idiopathic: IPAH). PG regulation, deposition, and synthesis were notably heightened in IPAH, followed by PH-PF, with minor alterations in PH-COPD. Single-cell analysis unveiled cell-type and disease-specific PG regulation. Agrin expression, a basement membrane PG, was increased in IPAH, with PA endothelial cells (PAECs) identified as a major source. PA smooth muscle cells (PASMCs) mainly produced large-PGs, aggrecan and versican, and small-leucine-like proteoglycan (SLRP) biglycan, while the major PGs produced by adventitial fibroblasts were SLRP decorin and lumican. In IPAH and PF-PH, the neointima-forming PASMC population increased the expression of all investigated large-PGs and SLRPs, except fibroblast-predominant DCN. Expression of lumican, versican, and biglycan also positively correlated with collagen 1α1/1α2 expression in PASMCs of IPAH and PH-PF patients. We demonstrated that TGF-ß regulates versican and biglycan expression, indicating their contribution to vessel fibrosis in IPAH and PF-PH. We furthermore show that certain circulating PG levels display a disease-dependent pattern, with increased decorin and lumican across all patient groups, while versican was elevated in PH-COPD and IPAH and biglycan reduced in IPAH. These findings suggest unique compartment-specific PG regulation in different forms of PH, indicating distinct pathological processes.

3.
Am J Physiol Cell Physiol ; 325(5): C1294-C1312, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37694286

RESUMEN

Deposition of basement membrane components, such as collagen IVα5, is associated with altered endothelial cell function in pulmonary hypertension. Collagen IVα5 harbors a functionally active fragment within its C-terminal noncollageneous (NC1) domain, called pentastatin, whose role in pulmonary endothelial cell behavior remains unknown. Here, we demonstrate that pentastatin serves as a mediator of pulmonary endothelial cell dysfunction, contributing to pulmonary hypertension. In vitro, treatment with pentastatin induced transcription of immediate early genes and proinflammatory cytokines and led to a functional loss of endothelial barrier integrity in pulmonary arterial endothelial cells. Mechanistically, pentastatin leads to ß1-integrin subunit clustering and Rho/ROCK activation. Blockage of the ß1-integrin subunit or the Rho/ROCK pathway partially attenuated the pentastatin-induced endothelial barrier disruption. Although pentastatin reduced the viability of endothelial cells, smooth muscle cell proliferation was induced. These effects on the pulmonary vascular cells were recapitulated ex vivo in the isolated-perfused lung model, where treatment with pentastatin-induced swelling of the endothelium accompanied by occasional endothelial cell apoptosis. This was reflected by increased vascular permeability and elevated pulmonary arterial pressure induced by pentastatin. This study identifies pentastatin as a mediator of endothelial cell dysfunction, which thus might contribute to the pathogenesis of pulmonary vascular disorders such as pulmonary hypertension.NEW & NOTEWORTHY This study is the first to show that pentastatin, the matrikine of the basement membrane (BM) collagen IVα5 polypeptide, triggers rapid pulmonary arterial endothelial cell barrier disruption, activation, and apoptosis in vitro and ex vivo. Mechanistically, pentastatin partially acts through binding to the ß1-integrin subunit and the Rho/ROCK pathway. These findings are the first to link pentastatin to pulmonary endothelial dysfunction and, thus, suggest a major role for BM-matrikines in pulmonary vascular diseases such as pulmonary hypertension.


Asunto(s)
Hipertensión Pulmonar , Humanos , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/metabolismo , Células Endoteliales/metabolismo , Pulmón/metabolismo , Endotelio/metabolismo , Arteria Pulmonar/metabolismo , Colágeno/metabolismo , Integrinas/metabolismo
4.
Allergy ; 78(11): 2944-2958, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37486026

RESUMEN

RATIONALE AND OBJECTIVE: Plasma extracellular vesicles (EVs) represent a vital source of molecular information about health and disease states. Due to their heterogenous cellular sources, EVs and their cargo may predict specific pathomechanisms behind disease phenotypes. Here we aimed to utilize EV microRNA (miRNA) signatures to gain new insights into underlying molecular mechanisms of obesity-associated low type-2 asthma. METHODS: Obese low type-2 asthma (OA) and non-obese low type-2 asthma (NOA) patients were selected from an asthma cohort conjointly with healthy controls. Plasma EVs were isolated and characterised by nanoparticle tracking analysis. EV-associated small RNAs were extracted, sequenced and bioinformatically analysed. RESULTS: Based on EV miRNA expression profiles, a clear distinction between the three study groups could be established using a principal component analysis. Integrative pathway analysis of potential target genes of the differentially expressed miRNAs revealed inflammatory cytokines (e.g., interleukin-6, transforming growth factor-beta, interferons) and metabolic factors (e.g., insulin, leptin) signalling pathways to be specifically associated with OA. The miR-17-92 and miR-106a-363 clusters were significantly enriched only in OA. These miRNA clusters exhibited discrete bivariate correlations with several key laboratory (e.g., C-reactive protein) and lung function parameters. Plasma EV miRNA signatures mirrored blood-derived CD4+ T-cell transcriptome data, but achieved an even higher sensitivity in identifying specifically affected biological pathways. CONCLUSION: The identified plasma EV miRNA signatures and particularly the miR-17-92 and -106a-363 clusters were capable to disentangle specific mechanisms of the obesity-associated low type-2 asthma phenotype, which may serve as basis for stratified treatment development.


Asunto(s)
Vesículas Extracelulares , MicroARNs , Humanos , MicroARNs/metabolismo , Citocinas/metabolismo , Interleucina-6/metabolismo , Vesículas Extracelulares/metabolismo , Obesidad/complicaciones , Obesidad/metabolismo
5.
Am J Respir Crit Care Med ; 206(8): 981-998, 2022 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-35763380

RESUMEN

Rationale: Pulmonary hypertension (PH) is a common, severe comorbidity in interstitial lung diseases such as pulmonary fibrosis (PF), and it has limited treatment options. Excessive vascular fibrosis and inflammation are often present in PH, but the underlying mechanisms are still not well understood. Objectives: To identify a novel functional link between natural killer T (NKT) cell activation and vascular fibrosis in PF-PH. Methods: Multicolor flow cytometry, secretome, and immunohistological analyses were complemented by pharmacological NKT cell activation in vivo, in vitro, and ex vivo. Measurements and Main Results: In pulmonary vessels of patients with PF-PH, increased collagen deposition was linked to a local NKT cell deficiency and decreased IL-15 concentrations. In a mouse model of PH caused by lung fibrosis, pharmacological NKT cell activation using a synthetic α-galactosylceramide analog (KRN7000) restored local NKT cell numbers and ameliorated vascular remodeling and right ventricular systolic pressure. Supplementation with activated NKT cells reduced collagen deposition in isolated human pulmonary arterial smooth muscle cells (hPASMCs) and in ex vivo precision-cut lung slices of patients with end-stage PF-PH. Coculture with activated NKT cells induced STAT1 signaling in hPASMCs. Secretome analysis of peripheral blood mononuclear cells identified CXCL9 and CXCL10 as indicators of NKT cell activation. Pharmacologically, CXCL9, but not CXCL10, potently inhibited collagen deposition in hPASMCs via the chemokine receptor CXCR3. Conclusions: Our results indicate that the absence of NKT cells impairs the STAT1-CXCL9-CXCR3 axis in PF-PH and that restoration of this axis by NKT cell activation may unravel a novel therapeutic strategy to target vascular fibrosis in interstitial lung disease.


Asunto(s)
Hipertensión Pulmonar , Enfermedades Pulmonares Intersticiales , Fibrosis Pulmonar , Animales , Humanos , Ratones , Quimiocina CXCL9/uso terapéutico , Colágeno/metabolismo , Hipertensión Pulmonar/tratamiento farmacológico , Interleucina-15/uso terapéutico , Leucocitos Mononucleares/metabolismo , Enfermedades Pulmonares Intersticiales/patología , Factor de Transcripción STAT1 , Células T Asesinas Naturales
6.
Int J Mol Sci ; 24(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37569308

RESUMEN

Pulmonary hypertension (PH) has a high mortality and few treatment options. Adaptive immune mediators of PH in mice challenged with antigen/particulate matter (antigen/PM) has been the focus of our prior work. We identified key roles of type-2- and type-17 responses in C57BL/6 mice. Here, we focused on type-2-response-related cytokines, specifically resistin-like molecule (RELM)α, a critical mediator of hypoxia-induced PH. Because of strain differences in the immune responses to type 2 stimuli, we compared C57BL/6J and BALB/c mice. A model of intraperitoneal antigen sensitization with subsequent, intranasal challenges with antigen/PM (ovalbumin and urban ambient PM2.5) or saline was used in C57BL/6 and BALB/c wild-type or RELMα-/- mice. Vascular remodeling was assessed with histology; right ventricular (RV) pressure, RV weights and cytokines were quantified. Upon challenge with antigen/PM, both C57BL/6 and BALB/c mice developed pulmonary vascular remodeling; these changes were much more prominent in the C57BL/6 strain. Compared to wild-type mice, RELMα-/- had significantly reduced pulmonary vascular remodeling in BALB/c, but not in C57BL/6 mice. RV weights, RV IL-33 and RV IL-33-receptor were significantly increased in BALB/c wild-type mice, but not in BALB/c-RELMα-/- or in C57BL/6-wild-type or C57BL/6-RELMα-/- mice in response to antigen/PM2.5. RV systolic pressures (RVSP) were higher in BALB/c compared to C57BL/6J mice, and RELMα-/- mice were not different from their respective wild-type controls. The RELMα-/- animals demonstrated significantly decreased expression of RELMß and RELMγ, which makes these mice comparable to a situation where human RELMß levels would be significantly modified, as only humans have this single RELM molecule. In BALB/c mice, RELMα was a key contributor to pulmonary vascular remodeling, increase in RV weight and RV cytokine responses induced by exposure to antigen/PM2.5, highlighting the significance of the genetic background for the biological role of RELMα.


Asunto(s)
Hipertensión Pulmonar , Interleucina-33 , Ratones , Humanos , Animales , Material Particulado/toxicidad , Remodelación Vascular , Resistina , Modelos Animales de Enfermedad , Péptidos y Proteínas de Señalización Intercelular , Ratones Endogámicos C57BL , Hipertensión Pulmonar/metabolismo , Citocinas , Alérgenos
7.
Eur Respir J ; 60(4)2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35332068

RESUMEN

BACKGROUND: Systemic sclerosis (SSc) is an autoimmune disease characterised by severe vasculopathy and fibrosis of various organs including the lung. Targeted treatment options for SSc-associated interstitial lung disease (SSc-ILD) are scarce. We assessed the effects of pirfenidone in a mouse model of SSc-ILD. METHODS: Pulmonary function, inflammation and collagen deposition in response to pirfenidone were assessed in Fra-2-overexpressing transgenic (Fra-2 TG) and bleomycin-treated mice. In Fra-2 TG mice, lung transcriptome was analysed after pirfenidone treatment. In vitro, pirfenidone effects on human eosinophil and endothelial cell function were analysed using flow cytometry-based assays and electric cell-substrate impedance measurements, respectively. RESULTS: Pirfenidone treatment attenuated pulmonary remodelling in the bleomycin model, but aggravated pulmonary inflammation, fibrosis and vascular remodelling in Fra-2 TG mice. Pirfenidone increased interleukin (IL)-4 levels and eosinophil numbers in lung tissue of Fra-2 TG mice without directly affecting eosinophil activation and migration in vitro. A pronounced immune response with high levels of cytokines/chemokines and disturbed endothelial integrity with low vascular endothelial (VE)-cadherin levels was observed in pirfenidone-treated Fra-2 TG mice. In contrast, eosinophil and VE-cadherin levels were unchanged in bleomycin-treated mice and not influenced by pirfenidone. In vitro, pirfenidone exacerbated the IL-4 induced reduction of endothelial barrier resistance, leading to higher leukocyte transmigration. CONCLUSION: This study shows that antifibrotic properties of pirfenidone may be overruled by unwanted interactions with pre-injured endothelium in a setting of high T-helper type 2 inflammation in a model of SSc-ILD. Careful ILD patient phenotyping may be required to exploit benefits of pirfenidone while avoiding therapy failure and additional lung damage in some patients.


Asunto(s)
Enfermedades Pulmonares Intersticiales , Esclerodermia Sistémica , Humanos , Ratones , Animales , Interleucina-4/farmacología , Esclerodermia Sistémica/complicaciones , Esclerodermia Sistémica/tratamiento farmacológico , Esclerodermia Sistémica/metabolismo , Bleomicina/farmacología , Enfermedades Pulmonares Intersticiales/tratamiento farmacológico , Enfermedades Pulmonares Intersticiales/complicaciones , Pulmón/patología , Fibrosis , Modelos Animales de Enfermedad , Inflamación/metabolismo , Colágeno/metabolismo , Colágeno/farmacología , Citocinas/metabolismo , Quimiocinas/metabolismo , Cadherinas/metabolismo
8.
Allergy ; 77(3): 870-882, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34309864

RESUMEN

BACKGROUND: High-altitude therapy has been used as add-on treatment for allergic asthma with considerable success. However, the underlying mechanisms remain unclear. In order to investigate the possible therapeutic effects of high-altitude therapy on allergic asthma, we utilized a new in vivo mouse model. METHODS: Mice were treated with house dust mite (HDM) extract over 4 weeks and co-exposed to 10% oxygen (Hyp) or room air for the final 2 weeks. Experimental asthma was assessed by airway hyper-responsiveness, mucus hypersecretion and inflammatory cell recruitment. Isolated immune cells from mouse and allergic patients were stimulated in vitro with HDM under Hyp and normoxia in different co-culture systems to analyse the adaptive immune response. RESULTS: Compared to HDM-treated mice in room air, HDM-treated Hyp-mice displayed ameliorated mucosal hypersecretion and airway hyper-responsiveness. The attenuated asthma phenotype was associated with strongly reduced activation of antigen-presenting cells (APCs), effector cell infiltration and cytokine secretion. In vitro, hypoxia almost completely suppressed the HDM-induced adaptive immune response in both mouse and human immune cells. While hypoxia did not affect effector T-cell responses per-se, it interfered with antigen-presenting cell (APC) differentiation and APC/effector cell crosstalk. CONCLUSIONS: Hypoxia-induced reduction in the Th2-response to HDM ameliorates allergic asthma in vivo. Hypoxia interferes with APC/T-cell crosstalk and confers an unresponsive phenotype to APCs.


Asunto(s)
Asma , Oxígeno , Alérgenos , Animales , Modelos Animales de Enfermedad , Humanos , Hipoxia , Inmunidad Humoral , Ratones , Oxígeno/farmacología , Pyroglyphidae , Células Th2
9.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L916-L925, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33655757

RESUMEN

Idiopathic pulmonary fibrosis (IPF) is a deadly condition characterized by progressive respiratory dysfunction. Exacerbations due to airway infections are believed to promote disease progression, and presence of Streptococcus in the lung microbiome has been associated with the progression of IPF and mortality. The aim of this study was to analyze the effect of lung fibrosis on susceptibility to pneumococcal pneumonia and bacteremia. The effects of subclinical (low dose) infection with Streptococcus pneumoniae were studied in a well characterized fos-related antigen-2 (Fra-2) transgenic (TG) mouse model of spontaneous, progressive pulmonary fibrosis. Forty-eight hours after transnasal infection with S. pneumoniae, bacterial load was assessed in lung tissue, bronchoalveolar lavage (BAL), blood, and spleen. Leukocyte subsets and cytokine levels were analyzed in BAL and blood. Lung compliance and arterial blood gases were assessed. In contrast to wildtype mice, low dose lung infection with S. pneumoniae in Fra-2 TG mice resulted in substantial pneumonia including weight loss, increased lung bacterial load, and bacteremia. BAL alveolar macrophages were reduced in Fra-2 TG mice compared to the corresponding WT mice. Proinflammatory cytokines and chemokines (IL-1ß, IL-6, TNF-α, and CXCL1) were elevated upon infection in BAL supernatant and plasma of Fra-2 TG mice. Lung compliance was decreased in Fra-2 TG mice following low dose infection with S. pneumoniae. Pulmonary fibrosis increases susceptibility to pneumococcal pneumonia and bacteremia possibly via impaired alveolar bacterial clearance.


Asunto(s)
Antígeno 2 Relacionado con Fos , Macrófagos Alveolares , Neumonía Neumocócica , Fibrosis Pulmonar , Streptococcus pneumoniae/metabolismo , Animales , Citocinas/genética , Citocinas/metabolismo , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Antígeno 2 Relacionado con Fos/genética , Antígeno 2 Relacionado con Fos/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiología , Macrófagos Alveolares/patología , Ratones , Ratones Transgénicos , Neumonía Neumocócica/genética , Neumonía Neumocócica/metabolismo , Neumonía Neumocócica/microbiología , Neumonía Neumocócica/patología , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/microbiología , Fibrosis Pulmonar/patología
10.
Int J Mol Sci ; 22(18)2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34576307

RESUMEN

In the era of personalized medicine, insights into the molecular mechanisms that differentially contribute to disease phenotypes, such as asthma phenotypes including obesity-associated asthma, are urgently needed. Peripheral blood was drawn from 10 obese, non-atopic asthmatic adults with a high body mass index (BMI; 36.67 ± 6.90); 10 non-obese, non-atopic asthmatic adults with normal BMI (23.88 ± 2.73); and 10 healthy controls with normal BMI (23.62 ± 3.74). All asthmatic patients were considered to represent a low type-2 asthma phenotype according to selective clinical parameters. RNA sequencing (RNA-Seq) was conducted on peripheral blood CD4+ T cells. Thousands of differentially expressed genes were identified in both asthma groups compared with heathy controls. The expression of interferon (IFN)-stimulated genes associated with IFN-related signaling pathways was specifically affected in obese asthmatics, while the gap junction and G protein-coupled receptor (GPCR) ligand binding pathways were enriched in both asthma groups. Furthermore, obesity gene markers were also upregulated in CD4+ T cells from obese asthmatics compared with the two other groups. Additionally, the enriched genes of the three abovementioned pathways showed a unique correlation pattern with various laboratory and clinical parameters. The specific activation of IFN-related signaling and viral infection pathways might provide a novel view of the molecular mechanisms associated with the development of the low type-2 obesity-associated asthma phenotype, which is a step ahead in the development of new stratified therapeutic approaches.


Asunto(s)
Asma/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Interferones/metabolismo , Obesidad/metabolismo , Transducción de Señal , Adulto , Asma/complicaciones , Células Cultivadas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Obesidad/complicaciones , Receptores Acoplados a Proteínas G/metabolismo
11.
Int J Mol Sci ; 22(17)2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34502263

RESUMEN

The regulator of G protein signaling (RGS) represents a widespread system of controllers of cellular responses. The activities of the R4 subfamily of RGSs have been elucidated in allergic pulmonary diseases. However, the R4 signaling in other inflammatory lung diseases, with a strong cellular immune response, remained unexplored. Thus, our study aimed to discern the functional relevance of the R4 family member, RGS5, as a potential modulating element in this context. Gene profiling of the R4 subfamily showed increased RGS5 expression in human fibrosing lung disease samples. In line with this, RGS5 was markedly increased in murine lungs following bleomycin injury. RGS knock-out mice (RGS-/-) had preserved lung function while control mice showed significant combined ventilatory disorders three days after bleomycin application as compared to untreated control mice. Loss of RGS5 was associated with a significantly reduced neutrophil influx and tissue myeloperoxidase expression. In the LPS lung injury model, RGS5-/- mice also failed to recruit neutrophils into the lung, which was accompanied by reduced tissue myeloperoxidase levels after 24 h. Our in-vitro assays showed impaired migration of RGS5-/- neutrophils towards chemokines despite preserved Ca2+ signaling. ERK dephosphorylation might play a role in reduced neutrophil migration in our model. As a conclusion, loss of RGS5 preserves lung function and attenuates hyperinflammation in the acute phase of bleomycin-induced pulmonary fibrosis and LPS-induced lung injury. Targeting RGS5 might alleviate the severity of exacerbations in interstitial lung diseases.


Asunto(s)
Inflamación/metabolismo , Lesión Pulmonar/metabolismo , Neutrófilos/metabolismo , Proteínas RGS/genética , Proteínas RGS/metabolismo , Animales , Bleomicina/toxicidad , Quimiotaxis/genética , Modelos Animales de Enfermedad , Fibrosis/genética , Humanos , Inflamación/inducido químicamente , Lipopolisacáridos/toxicidad , Enfermedades Pulmonares Intersticiales/genética , Enfermedades Pulmonares Intersticiales/metabolismo , Enfermedades Pulmonares Intersticiales/patología , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/patología , Sistema de Señalización de MAP Quinasas/genética , Ratones , Ratones Noqueados , Neutrófilos/citología , Proteínas RGS/deficiencia , Síndrome de Dificultad Respiratoria/genética , Síndrome de Dificultad Respiratoria/metabolismo
12.
Am J Respir Cell Mol Biol ; 63(1): 104-117, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32160015

RESUMEN

The extracellular matrix (ECM) increasingly emerges as an active driver in several diseases, including idiopathic pulmonary arterial hypertension (IPAH). The basement membrane (BM) is a specialized class of ECM proteins. In pulmonary arteries, the BM is in close contact and direct proximity to vascular cells, including endothelial cells. So far, the role of the BM has remained underinvestigated in IPAH. Here, we aimed to shed light on the involvement of the BM in IPAH, by addressing its structure, composition, and function. On an ultrastructural level, we observed a marked increase in BM thickness in IPAH pulmonary vessels. BM composition was distinct in small and large vessels and altered in IPAH. Proteoglycans were mostly responsible for distinction between smaller and larger vessels, whereas BM collagens and laminins were more abundantly expressed in IPAH. Type IV collagen and laminin both strengthened endothelial barrier integrity. However, only type IV collagen concentration dependently increased cell adhesion of both donor and IPAH-derived pulmonary arterial endothelial cells (PAECs) and induced nuclear translocation of mechanosensitive transcriptional coactivator of the hippo pathway YAP (Yes-activated protein). On the other hand, laminin caused cytoplasmic retention of YAP in IPAH PAECs. Accordingly, silencing of COL4A5 and LAMC1, respectively, differentially affected tight junction formation and barrier integrity in both donor and IPAH PAECs. Collectively, our results highlight the importance of a well-maintained BM homeostasis. By linking changes in BM structure and composition to altered endothelial cell function, we here suggest an active involvement of the BM in IPAH pathogenesis.


Asunto(s)
Membrana Basal/fisiopatología , Células Endoteliales/fisiología , Hipertensión Pulmonar Primaria Familiar/fisiopatología , Arteria Pulmonar/fisiopatología , Adulto , Membrana Basal/metabolismo , Colágeno Tipo IV/metabolismo , Células Endoteliales/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/fisiología , Proteínas de la Matriz Extracelular/metabolismo , Hipertensión Pulmonar Primaria Familiar/metabolismo , Femenino , Humanos , Laminina/metabolismo , Masculino , Proteoglicanos/metabolismo , Arteria Pulmonar/metabolismo
13.
Am J Physiol Lung Cell Mol Physiol ; 318(4): L684-L697, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32023084

RESUMEN

Pulmonary fibrosis is characterized by pronounced collagen deposition and myofibroblast expansion, whose origin and plasticity remain elusive. We utilized a fate-mapping approach to investigate α-smooth muscle actin (αSMA)+ and platelet-derived growth factor receptor α (PDGFRα)+ cells in two lung fibrosis models, complemented by cell type-specific next-generation sequencing and investigations on human lungs. Our data revealed that αSMA+ and PDGFRα+ cells mark two distinct mesenchymal lineages with minimal transdifferentiation potential during lung fibrotic remodeling. Parenchymal and perivascular fibrotic regions were populated predominantly with PDGFRα+ cells expressing collagen, while αSMA+ cells in the parenchyma and vessel wall showed variable expression of collagen and the contractile protein desmin. The distinct gene expression profile found in normal conditions was retained during pathologic remodeling. Cumulatively, our findings identify αSMA+ and PDGFRα+ cells as two separate lineages with distinct gene expression profiles in adult lungs. This cellular heterogeneity suggests that anti-fibrotic therapy should target diverse cell populations.


Asunto(s)
Actinas/metabolismo , Pulmón/metabolismo , Células Madre Mesenquimatosas/metabolismo , Fibrosis Pulmonar/metabolismo , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Animales , Linaje de la Célula/fisiología , Femenino , Humanos , Pulmón/patología , Masculino , Células Madre Mesenquimatosas/patología , Ratones , Ratones Endogámicos C57BL , Fibrosis Pulmonar/patología , Remodelación Vascular/fisiología
14.
Respir Res ; 21(1): 167, 2020 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-32616042

RESUMEN

Inhibitors of cyclin-dependent kinases 4/6 (CDK4/6) block cell cycle progression and are commonly used for treatment of several forms of cancer. Due to their anti-proliferative mode of action, we hypothesized that palbociclib could attenuate the development of bleomycin-induced lung fibrosis. In a preclinical setting, mice were treated with bleomycin and then co-treated with or without palbociclib. Lung function, collagen deposition and pulmonary inflammation were analysed after 14 days.Bleomycin treatment led to an increase of pulmonary fibrosis and inflammation, and concomitant decline of lung function. Palbociclib treatment significantly decreased collagen deposition in the lung after bleomycin treatment, but did not ameliorate lung function. Importantly, palbociclib augmented inflammatory cell recruitment (including macrophages and T cells) in the bronchoalveolar lavage fluid.This study supports the recent alert from the Food and Drug Administration (FDA) that use of CDK4/6 inhibitors, such as palbociclib, may have severe pulmonary adverse effects. Our study showing heightened pulmonary inflammation following palbociclib treatment highlights the risk of severe inflammatory adverse effects in the lung. This is of special interest in patients with known pulmonary risk factors and emphasizes the need of careful monitoring all patients treated with CDK4/6 inhibitors for signs of lung inflammation.


Asunto(s)
Bleomicina , Quinasa 4 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Inflamación/inducido químicamente , Inflamación/patología , Inhibidores de Proteínas Quinasas/efectos adversos , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/patología , Animales , Líquido del Lavado Bronquioalveolar/citología , Colágeno/metabolismo , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Macrófagos , Ratones , Piperazinas/farmacología , Piridinas/farmacología , Linfocitos T
15.
J Pathol ; 247(3): 357-370, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30450722

RESUMEN

In idiopathic pulmonary arterial hypertension (IPAH), global transcriptional changes induce a smooth muscle cell phenotype characterised by excessive proliferation, migration, and apoptosis resistance. Long non-coding RNAs (lncRNAs) are key regulators of cellular function. Using a compartment-specific transcriptional profiling approach, we sought to investigate the link between transcriptional reprogramming by lncRNAs and the maladaptive smooth muscle cell phenotype in IPAH. Transcriptional profiling of small remodelled arteries from 18 IPAH patients and 17 controls revealed global perturbations in metabolic, neuronal, proliferative, and immunological processes. We demonstrated an IPAH-specific lncRNA expression profile and identified the lncRNA PAXIP1-AS1 as highly abundant. Comparative transcriptomic analysis and functional assays revealed an intrinsic role for PAXIP1-AS1 in orchestrating the hyperproliferative and migratory actions of IPAH smooth muscle cells. Further, we showed that PAXIP1-AS1 mechanistically interferes with the focal adhesion axis via regulation of expression and phosphorylation of its downstream target paxillin. Overall, we show that changes in the lncRNA transcriptome contribute to the disease-specific transcriptional landscape in IPAH. Our results suggest that lncRNAs, such as PAXIP1-AS1, can modulate smooth muscle cell function by affecting multiple IPAH-specific transcriptional programmes. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Proteínas de Unión al ADN/genética , Hipertensión Pulmonar Primaria Familiar/genética , ARN Largo no Codificante/genética , Adulto , Apoptosis/genética , Apoptosis/fisiología , Movimiento Celular/genética , Proliferación Celular/genética , Proteínas de Unión al ADN/fisiología , Matriz Extracelular/metabolismo , Hipertensión Pulmonar Primaria Familiar/patología , Femenino , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica/fisiología , Humanos , Masculino , Persona de Mediana Edad , Miocitos del Músculo Liso/patología , Arteria Pulmonar/metabolismo , Transcriptoma , Remodelación Vascular/genética , Remodelación Vascular/fisiología , Adulto Joven
16.
Am J Respir Crit Care Med ; 199(12): 1550-1560, 2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30557518

RESUMEN

Rationale: Remodeling and fibrosis of the right ventricle (RV) may cause RV dysfunction and poor survival in patients with pulmonary hypertension. Objectives: To investigate the consequences of RV fibrosis modulation and the accompanying cellular changes on RV function. Methods: Expression of fibrotic markers was assessed in the RV of patients with pulmonary hypertension, the murine pulmonary artery banding, and rat monocrotaline and Sugen5416/hypoxia models. Invasive hemodynamic and echocardiographic assessment was performed on galectin-3 knockout or inhibitor-treated mice. Measurements and Main Results: Established fibrosis was characterized by marked expression of galectin-3 and an enhanced number of proliferating RV fibroblasts. Galectin-3 genetic and pharmacologic inhibition or antifibrotic treatment with pirfenidone significantly diminished RV fibrosis progression in the pulmonary artery banding model, without improving RV functional parameters. RV fibrotic regions were populated with mesenchymal cells coexpressing vimentin and PDGFRα (platelet-derived growth factor receptor-α), but generally lacked αSMA (α-smooth muscle actin) positivity. Serum levels of galectin-3 were increased in patients with idiopathic pulmonary arterial hypertension but did not correlate with cardiac function. No changes of galectin-3 expression were observed in the lungs. Conclusions: We identified extrapulmonary galectin-3 as an important mediator that drives RV fibrosis in pulmonary hypertension through the expansion of PDGFRα/vimentin-expressing cardiac fibroblasts. However, interventions effectively targeting fibrosis lack significant beneficial effects on RV function.


Asunto(s)
Fibrosis/complicaciones , Fibrosis/fisiopatología , Galectina 3/inmunología , Hipertrofia Ventricular Derecha/etiología , Hipertrofia Ventricular Derecha/fisiopatología , Disfunción Ventricular Derecha/etiología , Disfunción Ventricular Derecha/fisiopatología , Animales , Austria , Baltimore , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratas , Función Ventricular Derecha/efectos de los fármacos
17.
J Allergy Clin Immunol ; 144(3): 764-776, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31082458

RESUMEN

BACKGROUND: Lung eosinophilia is a hallmark of asthma, and eosinophils are believed to play a crucial role in the pathogenesis of allergic inflammatory diseases. Short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate, are produced in high amounts in the gastrointestinal tract by commensal bacteria and can be absorbed into the bloodstream. Although there is recent evidence that SCFAs are beneficial in allergic asthma models, the effect on eosinophils has remained elusive. OBJECTIVE: The role of SCFAs was investigated in human eosinophil function and a mouse model of allergic asthma. METHODS: Eosinophils were purified from self-reported allergic or healthy donors. Migration, adhesion to the endothelium, and eosinophil survival were studied in vitro. Ca2+ flux, apoptosis, mitochondrial membrane potential, and expression of surface markers were determined by using flow cytometry and in part by using real-time PCR. Allergic airway inflammation was assessed in vivo in an ovalbumin-induced asthma model by using invasive spirometry. RESULTS: For the first time, we observed that SCFAs were able to attenuate human eosinophils at several functional levels, including (1) adhesion to the endothelium, (2) migration, and (3) survival. These effects were independent from GPR41 and GPR43 but were accompanied by histone acetylation and mimicked by trichostatin A, a pan-histone deacetylase inhibitor. In vivo butyrate ameliorated allergen-induced airway and lung eosinophilia, reduced type 2 cytokine levels in bronchial fluid, and improved airway hyperresponsiveness in mice. CONCLUSION: These in vitro and in vivo findings highlight the importance of SCFAs, especially butyrate as a promising therapeutic agent in allergic inflammatory diseases.


Asunto(s)
Antiinflamatorios/uso terapéutico , Asma/tratamiento farmacológico , Butiratos/farmacología , Butiratos/uso terapéutico , Eosinófilos/efectos de los fármacos , Eosinofilia Pulmonar/tratamiento farmacológico , Animales , Antiinflamatorios/farmacología , Apoptosis/efectos de los fármacos , Asma/genética , Asma/inmunología , Movimiento Celular/efectos de los fármacos , Eosinófilos/inmunología , Eosinófilos/fisiología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Ratones Endogámicos BALB C , Eosinofilia Pulmonar/genética , Eosinofilia Pulmonar/inmunología
18.
Eur Respir J ; 54(3)2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31320452

RESUMEN

The interleukin (IL)-1 family of cytokines is strongly associated with systemic sclerosis (SSc) and pulmonary involvement, but the molecular mechanisms are poorly understood. The aim of this study was to assess the role of IL-1α and IL-1ß in pulmonary vascular and interstitial remodelling in a mouse model of SSc.IL-1α and IL-1ß were localised in lungs of SSc patients and in the fos-related antigen-2 (Fra-2) transgenic (TG) mouse model of SSc. Lung function, haemodynamic parameters and pulmonary inflammation were measured in Fra-2 TG mice with or without 8 weeks of treatment with the IL-1 receptor antagonist anakinra (25 mg·kg-1·day-1). Direct effects of IL-1 on pulmonary arterial smooth muscle cells (PASMCs) and parenchymal fibroblasts were investigated in vitroFra-2 TG mice exhibited increased collagen deposition in the lung, restrictive lung function and enhanced muscularisation of the vasculature with concomitant pulmonary hypertension reminiscent of the changes in SSc patients. Immunoreactivity of IL-1α and IL-1ß was increased in Fra-2 TG mice and in patients with SSc. IL-1 stimulation reduced collagen expression in PASMCs and parenchymal fibroblasts via distinct signalling pathways. Blocking IL-1 signalling in Fra-2 TG worsened pulmonary fibrosis and restriction, enhanced T-helper cell type 2 (Th2) inflammation, and increased the number of pro-fibrotic, alternatively activated macrophages.Our data suggest that blocking IL-1 signalling as currently investigated in several clinical studies might aggravate pulmonary fibrosis in specific patient subsets due to Th2 skewing of immune responses and formation of alternatively activated pro-fibrogenic macrophages.


Asunto(s)
Inflamación/metabolismo , Receptores Tipo I de Interleucina-1/antagonistas & inhibidores , Esclerodermia Sistémica/metabolismo , Células Th2/metabolismo , Animales , Líquido del Lavado Bronquioalveolar , Modelos Animales de Enfermedad , Femenino , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Interleucina-1alfa/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Ratones , Ratones Transgénicos , Miocitos del Músculo Liso/metabolismo , Fibrosis Pulmonar/patología , Pruebas de Función Respiratoria , Transducción de Señal
19.
Eur Respir J ; 53(6)2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31023847

RESUMEN

Our systematic analysis of anion channels and transporters in idiopathic pulmonary arterial hypertension (IPAH) showed marked upregulation of the Cl- channel TMEM16A gene. We hypothesised that TMEM16A overexpression might represent a novel vicious circle in the molecular pathways causing pulmonary arterial hypertension (PAH).We investigated healthy donor lungs (n=40) and recipient lungs with IPAH (n=38) for the expression of anion channel and transporter genes in small pulmonary arteries and pulmonary artery smooth muscle cells (PASMCs).In IPAH, TMEM16A was strongly upregulated and patch-clamp recordings confirmed an increased Cl- current in PASMCs (n=9-10). These cells were depolarised and could be repolarised by TMEM16A inhibitors or knock-down experiments (n=6-10). Inhibition/knock-down of TMEM16A reduced the proliferation of IPAH-PASMCs (n=6). Conversely, overexpression of TMEM16A in healthy donor PASMCs produced an IPAH-like phenotype. Chronic application of benzbromarone in two independent animal models significantly decreased right ventricular pressure and reversed remodelling of established pulmonary hypertension.Our findings suggest that increased TMEM16A expression and activity comprise an important pathologic mechanism underlying the vasoconstriction and remodelling of pulmonary arteries in PAH. Inhibition of TMEM16A represents a novel therapeutic approach to reverse remodelling in PAH.


Asunto(s)
Anoctamina-1/metabolismo , Hipertensión Pulmonar Primaria Familiar/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas de Neoplasias/metabolismo , Remodelación Vascular , Vasoconstricción , Adulto , Anciano , Animales , Anoctamina-1/genética , Estudios de Casos y Controles , Proliferación Celular , Modelos Animales de Enfermedad , Hipertensión Pulmonar Primaria Familiar/patología , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/patología , Proteínas de Neoplasias/genética , Técnicas de Placa-Clamp , Arteria Pulmonar/fisiopatología , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba
20.
J Pathol ; 244(4): 485-498, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29359814

RESUMEN

Pulmonary vascular remodeling is the main pathological hallmark of pulmonary hypertension disease. We undertook a comprehensive and multilevel approach to investigate the origin of smooth muscle actin-expressing cells in remodeled vessels. Transgenic mice that allow for specific, inducible, and permanent labeling of endothelial (Cdh5-tdTomato), smooth muscle (Acta2-, Myh11-tdTomato), pericyte (Cspg4-tdTomato), and fibroblast (Pdgfra-tdTomato) lineages were used to delineate the cellular origins of pulmonary vascular remodeling. Mapping the fate of major lung resident cell types revealed smooth muscle cells (SMCs) as the predominant source of cells that populate remodeled pulmonary vessels in chronic hypoxia and allergen-induced murine models. Combining in vivo cell type-specific, time-controlled labeling of proliferating cells with a pulmonary artery phenotypic explant assay, we identified proliferation of SMCs as an underlying remodeling pathomechanism. Multicolor immunofluorescence analysis showed a preserved pattern of cell type marker localization in murine and human pulmonary arteries, in both donors and idiopathic pulmonary arterial hypertension (IPAH) patients. Whilst neural glial antigen 2 (chondroitin sulfate proteoglycan 4) labeled mostly vascular supportive cells with partial overlap with SMC markers, PDGFRα-expressing cells were observed in the perivascular compartment. The luminal vessel side was lined by a single cell layer expressing endothelial markers followed by an adjacent and distinct layer defined by SMC marker expression and pronounced thickening in remodeled vessels. Quantitative flow cytometric analysis of single cell digests of diverse pulmonary artery layers showed the preserved separation into two discrete cell populations expressing either endothelial cell (EC) or SMC markers in human remodeled vessels. Additionally, we found no evidence of overlap between EC and SMC ultrastructural characteristics using electron microscopy in either donor or IPAH arteries. Lineage-specific marker expression profiles are retained during pulmonary vascular remodeling without any indication of cell type conversion. The expansion of resident SMCs is the major underlying and evolutionarily conserved paradigm of pulmonary vascular disease pathogenesis. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Asunto(s)
Linaje de la Célula , Genes Reporteros , Hipoxia/patología , Pulmón/irrigación sanguínea , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Hipersensibilidad Respiratoria/patología , Remodelación Vascular , Actinas/genética , Actinas/metabolismo , Animales , Antígenos/genética , Antígenos/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Cadherinas/genética , Cadherinas/metabolismo , Enfermedad Crónica , Modelos Animales de Enfermedad , Hipertensión Pulmonar Primaria Familiar/metabolismo , Hipertensión Pulmonar Primaria Familiar/patología , Hipertensión Pulmonar Primaria Familiar/fisiopatología , Técnica del Anticuerpo Fluorescente , Humanos , Hipoxia/genética , Hipoxia/metabolismo , Hipoxia/fisiopatología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones Transgénicos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatología , Miocitos del Músculo Liso/metabolismo , Fenotipo , Proteoglicanos/genética , Proteoglicanos/metabolismo , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Hipersensibilidad Respiratoria/genética , Hipersensibilidad Respiratoria/metabolismo , Hipersensibilidad Respiratoria/fisiopatología , Proteína Fluorescente Roja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA