Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.713
Filtrar
Más filtros

Intervalo de año de publicación
1.
Annu Rev Genet ; 57: 361-390, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-37722684

RESUMEN

Genetic biocontrol aims to suppress or modify populations of species to protect public health, agriculture, and biodiversity. Advancements in genome engineering technologies have fueled a surge in research in this field, with one gene editing technology, CRISPR, leading the charge. This review focuses on the current state of CRISPR technologies for genetic biocontrol of pests and highlights the progress and ongoing challenges of using these approaches.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Edición Génica , Genoma
2.
Mol Cell ; 80(2): 246-262.e4, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32949493

RESUMEN

CRISPR-Cas9-based gene drive systems possess the inherent capacity to spread progressively throughout target populations. Here we describe two self-copying (or active) guide RNA-only genetic elements, called e-CHACRs and ERACRs. These elements use Cas9 produced in trans by a gene drive either to inactivate the cas9 transgene (e-CHACRs) or to delete and replace the gene drive (ERACRs). e-CHACRs can be inserted at various genomic locations and carry two or more gRNAs, the first copying the e-CHACR and the second mutating and inactivating the cas9 transgene. Alternatively, ERACRs are inserted at the same genomic location as a gene drive, carrying two gRNAs that cut on either side of the gene drive to excise it. e-CHACRs efficiently inactivate Cas9 and can drive to completion in cage experiments. Similarly, ERACRs, particularly those carrying a recoded cDNA-restoring endogenous gene activity, can drive reliably to fully replace a gene drive. We compare the strengths of these two systems.


Asunto(s)
Eliminación de Gen , Tecnología de Genética Dirigida , Animales , Proteína 9 Asociada a CRISPR/metabolismo , Cromosomas/genética , Drosophila melanogaster/genética , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Patrón de Herencia/genética , Mutagénesis/genética , ARN Guía de Kinetoplastida/genética , Transgenes
3.
N Engl J Med ; 391(1): 9-20, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38875111

RESUMEN

BACKGROUND: Whether proton-pump inhibitors are beneficial or harmful for stress ulcer prophylaxis in critically ill patients undergoing invasive ventilation is unclear. METHODS: In this international, randomized trial, we assigned critically ill adults who were undergoing invasive ventilation to receive intravenous pantoprazole (at a dose of 40 mg daily) or matching placebo. The primary efficacy outcome was clinically important upper gastrointestinal bleeding in the intensive care unit (ICU) at 90 days, and the primary safety outcome was death from any cause at 90 days. Multiplicity-adjusted secondary outcomes included ventilator-associated pneumonia, Clostridioides difficile infection, and patient-important bleeding. RESULTS: A total of 4821 patients underwent randomization in 68 ICUs. Clinically important upper gastrointestinal bleeding occurred in 25 of 2385 patients (1.0%) receiving pantoprazole and in 84 of 2377 patients (3.5%) receiving placebo (hazard ratio, 0.30; 95% confidence interval [CI], 0.19 to 0.47; P<0.001). At 90 days, death was reported in 696 of 2390 patients (29.1%) in the pantoprazole group and in 734 of 2379 patients (30.9%) in the placebo group (hazard ratio, 0.94; 95% CI, 0.85 to 1.04; P = 0.25). Patient-important bleeding was reduced with pantoprazole; all other secondary outcomes were similar in the two groups. CONCLUSIONS: Among patients undergoing invasive ventilation, pantoprazole resulted in a significantly lower risk of clinically important upper gastrointestinal bleeding than placebo, with no significant effect on mortality. (Funded by the Canadian Institutes of Health Research and others; REVISE ClinicalTrials.gov number, NCT03374800.).


Asunto(s)
Enfermedad Crítica , Hemorragia Gastrointestinal , Pantoprazol , Úlcera Péptica , Inhibidores de la Bomba de Protones , Respiración Artificial , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad Crítica/terapia , Método Doble Ciego , Hemorragia Gastrointestinal/etiología , Hemorragia Gastrointestinal/prevención & control , Unidades de Cuidados Intensivos , Pantoprazol/uso terapéutico , Pantoprazol/efectos adversos , Pantoprazol/administración & dosificación , Úlcera Péptica/prevención & control , Neumonía Asociada al Ventilador/etiología , Inhibidores de la Bomba de Protones/uso terapéutico , Inhibidores de la Bomba de Protones/efectos adversos , Inhibidores de la Bomba de Protones/administración & dosificación , Respiración Artificial/efectos adversos , Estrés Fisiológico
4.
N Engl J Med ; 391(8): 722-735, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-38869931

RESUMEN

BACKGROUND: The effect of a liberal transfusion strategy as compared with a restrictive strategy on outcomes in critically ill patients with traumatic brain injury is unclear. METHODS: We randomly assigned adults with moderate or severe traumatic brain injury and anemia to receive transfusion of red cells according to a liberal strategy (transfusions initiated at a hemoglobin level of ≤10 g per deciliter) or a restrictive strategy (transfusions initiated at ≤7 g per deciliter). The primary outcome was an unfavorable outcome as assessed by the score on the Glasgow Outcome Scale-Extended at 6 months, which we categorized with the use of a sliding dichotomy that was based on the prognosis of each patient at baseline. Secondary outcomes included mortality, functional independence, quality of life, and depression at 6 months. RESULTS: A total of 742 patients underwent randomization, with 371 assigned to each group. The analysis of the primary outcome included 722 patients. The median hemoglobin level in the intensive care unit was 10.8 g per deciliter in the group assigned to the liberal strategy and 8.8 g per deciliter in the group assigned to the restrictive strategy. An unfavorable outcome occurred in 249 of 364 patients (68.4%) in the liberal-strategy group and in 263 of 358 (73.5%) in the restrictive-strategy group (adjusted absolute difference, restrictive strategy vs. liberal strategy, 5.4 percentage points; 95% confidence interval, -2.9 to 13.7). Among survivors, a liberal strategy was associated with higher scores on some but not all the scales assessing functional independence and quality of life. No association was observed between the transfusion strategy and mortality or depression. Venous thromboembolic events occurred in 8.4% of the patients in each group, and acute respiratory distress syndrome occurred in 3.3% and 0.8% of patients in the liberal-strategy and restrictive-strategy groups, respectively. CONCLUSIONS: In critically ill patients with traumatic brain injury and anemia, a liberal transfusion strategy did not reduce the risk of an unfavorable neurologic outcome at 6 months. (Funded by the Canadian Institutes of Health Research and others; HEMOTION ClinicalTrials.gov number, NCT03260478.).


Asunto(s)
Anemia , Lesiones Traumáticas del Encéfalo , Transfusión de Eritrocitos , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Anemia/sangre , Anemia/etiología , Anemia/terapia , Lesiones Traumáticas del Encéfalo/sangre , Lesiones Traumáticas del Encéfalo/complicaciones , Lesiones Traumáticas del Encéfalo/diagnóstico , Lesiones Traumáticas del Encéfalo/terapia , Enfermedad Crítica , Depresión/etiología , Transfusión de Eritrocitos/efectos adversos , Transfusión de Eritrocitos/métodos , Escala de Consecuencias de Glasgow , Hemoglobinas/análisis , Calidad de Vida
5.
Cell ; 148(4): 780-91, 2012 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-22341448

RESUMEN

The Tasmanian devil (Sarcophilus harrisii), the largest marsupial carnivore, is endangered due to a transmissible facial cancer spread by direct transfer of living cancer cells through biting. Here we describe the sequencing, assembly, and annotation of the Tasmanian devil genome and whole-genome sequences for two geographically distant subclones of the cancer. Genomic analysis suggests that the cancer first arose from a female Tasmanian devil and that the clone has subsequently genetically diverged during its spread across Tasmania. The devil cancer genome contains more than 17,000 somatic base substitution mutations and bears the imprint of a distinct mutational process. Genotyping of somatic mutations in 104 geographically and temporally distributed Tasmanian devil tumors reveals the pattern of evolution and spread of this parasitic clonal lineage, with evidence of a selective sweep in one geographical area and persistence of parallel lineages in other populations.


Asunto(s)
Neoplasias Faciales/veterinaria , Inestabilidad Genómica , Marsupiales/genética , Mutación , Animales , Evolución Clonal , Especies en Peligro de Extinción , Neoplasias Faciales/epidemiología , Neoplasias Faciales/genética , Neoplasias Faciales/patología , Femenino , Estudio de Asociación del Genoma Completo , Masculino , Datos de Secuencia Molecular , Tasmania/epidemiología
6.
Cell ; 149(5): 994-1007, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22608083

RESUMEN

Cancer evolves dynamically as clonal expansions supersede one another driven by shifting selective pressures, mutational processes, and disrupted cancer genes. These processes mark the genome, such that a cancer's life history is encrypted in the somatic mutations present. We developed algorithms to decipher this narrative and applied them to 21 breast cancers. Mutational processes evolve across a cancer's lifespan, with many emerging late but contributing extensive genetic variation. Subclonal diversification is prominent, and most mutations are found in just a fraction of tumor cells. Every tumor has a dominant subclonal lineage, representing more than 50% of tumor cells. Minimal expansion of these subclones occurs until many hundreds to thousands of mutations have accumulated, implying the existence of long-lived, quiescent cell lineages capable of substantial proliferation upon acquisition of enabling genomic changes. Expansion of the dominant subclone to an appreciable mass may therefore represent the final rate-limiting step in a breast cancer's development, triggering diagnosis.


Asunto(s)
Neoplasias de la Mama/genética , Transformación Celular Neoplásica , Evolución Clonal , Mutación , Algoritmos , Aberraciones Cromosómicas , Femenino , Humanos , Mutación Puntual
7.
Cell ; 149(5): 979-93, 2012 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-22608084

RESUMEN

All cancers carry somatic mutations. The patterns of mutation in cancer genomes reflect the DNA damage and repair processes to which cancer cells and their precursors have been exposed. To explore these mechanisms further, we generated catalogs of somatic mutation from 21 breast cancers and applied mathematical methods to extract mutational signatures of the underlying processes. Multiple distinct single- and double-nucleotide substitution signatures were discernible. Cancers with BRCA1 or BRCA2 mutations exhibited a characteristic combination of substitution mutation signatures and a distinctive profile of deletions. Complex relationships between somatic mutation prevalence and transcription were detected. A remarkable phenomenon of localized hypermutation, termed "kataegis," was observed. Regions of kataegis differed between cancers but usually colocalized with somatic rearrangements. Base substitutions in these regions were almost exclusively of cytosine at TpC dinucleotides. The mechanisms underlying most of these mutational signatures are unknown. However, a role for the APOBEC family of cytidine deaminases is proposed.


Asunto(s)
Neoplasias de la Mama/genética , Análisis Mutacional de ADN , Estudio de Asociación del Genoma Completo , Mutación , Desaminasas APOBEC-1 , Proteína BRCA2/genética , Citidina Desaminasa/metabolismo , Femenino , Genes BRCA1 , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos
8.
Proc Natl Acad Sci U S A ; 121(27): e2312456121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38917000

RESUMEN

Controlling the principal African malaria vector, the mosquito Anopheles gambiae, is considered essential to curtail malaria transmission. However, existing vector control technologies rely on insecticides, which are becoming increasingly ineffective. Sterile insect technique (SIT) is a powerful suppression approach that has successfully eradicated a number of insect pests, yet the A. gambiae toolkit lacks the requisite technologies for its implementation. SIT relies on iterative mass releases of nonbiting, nondriving, sterile males which seek out and mate with monandrous wild females. Once mated, females are permanently sterilized due to mating-induced refractoriness, which results in population suppression of the subsequent generation. However, sterilization by traditional methods renders males unfit, making the creation of precise genetic sterilization methods imperative. Here, we introduce a vector control technology termed precision-guided sterile insect technique (pgSIT), in A. gambiae for inducible, programmed male sterilization and female elimination for wide-scale use in SIT campaigns. Using a binary CRISPR strategy, we cross separate engineered Cas9 and gRNA strains to disrupt male-fertility and female-essential genes, yielding >99.5% male sterility and >99.9% female lethality in hybrid progeny. We demonstrate that these genetically sterilized males have good longevity, are able to induce sustained population suppression in cage trials, and are predicted to eliminate wild A. gambiae populations using mathematical models, making them ideal candidates for release. This work provides a valuable addition to the malaria genetic biocontrol toolkit, enabling scalable SIT-like confinable, species-specific, and safe suppression in the species.


Asunto(s)
Anopheles , Malaria , Control de Mosquitos , Mosquitos Vectores , Animales , Masculino , Anopheles/genética , Anopheles/fisiología , Mosquitos Vectores/genética , Mosquitos Vectores/parasitología , Malaria/transmisión , Malaria/prevención & control , Femenino , Control de Mosquitos/métodos , Infertilidad Masculina/genética , Sistemas CRISPR-Cas
9.
N Engl J Med ; 389(25): 2341-2354, 2023 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-37888913

RESUMEN

BACKGROUND: The efficacy of simvastatin in critically ill patients with coronavirus disease 2019 (Covid-19) is unclear. METHODS: In an ongoing international, multifactorial, adaptive platform, randomized, controlled trial, we evaluated simvastatin (80 mg daily) as compared with no statin (control) in critically ill patients with Covid-19 who were not receiving statins at baseline. The primary outcome was respiratory and cardiovascular organ support-free days, assessed on an ordinal scale combining in-hospital death (assigned a value of -1) and days free of organ support through day 21 in survivors; the analyis used a Bayesian hierarchical ordinal model. The adaptive design included prespecified statistical stopping criteria for superiority (>99% posterior probability that the odds ratio was >1) and futility (>95% posterior probability that the odds ratio was <1.2). RESULTS: Enrollment began on October 28, 2020. On January 8, 2023, enrollment was closed on the basis of a low anticipated likelihood that prespecified stopping criteria would be met as Covid-19 cases decreased. The final analysis included 2684 critically ill patients. The median number of organ support-free days was 11 (interquartile range, -1 to 17) in the simvastatin group and 7 (interquartile range, -1 to 16) in the control group; the posterior median adjusted odds ratio was 1.15 (95% credible interval, 0.98 to 1.34) for simvastatin as compared with control, yielding a 95.9% posterior probability of superiority. At 90 days, the hazard ratio for survival was 1.12 (95% credible interval, 0.95 to 1.32), yielding a 91.9% posterior probability of superiority of simvastatin. The results of secondary analyses were consistent with those of the primary analysis. Serious adverse events, such as elevated levels of liver enzymes and creatine kinase, were reported more frequently with simvastatin than with control. CONCLUSIONS: Although recruitment was stopped because cases had decreased, among critically ill patients with Covid-19, simvastatin did not meet the prespecified criteria for superiority to control. (REMAP-CAP ClinicalTrials.gov number, NCT02735707.).


Asunto(s)
COVID-19 , Enfermedad Crítica , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Simvastatina , Humanos , Teorema de Bayes , COVID-19/mortalidad , COVID-19/terapia , Tratamiento Farmacológico de COVID-19 , Enfermedad Crítica/mortalidad , Enfermedad Crítica/terapia , Mortalidad Hospitalaria , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Simvastatina/uso terapéutico , Resultado del Tratamiento
10.
CA Cancer J Clin ; 69(4): 305-343, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31116423

RESUMEN

The world of molecular profiling has undergone revolutionary changes over the last few years as knowledge, technology, and even standard clinical practice have evolved. Broad molecular profiling is now nearly essential for all patients with metastatic solid tumors. New agents have been approved based on molecular testing instead of tumor site of origin. Molecular profiling methodologies have likewise changed such that tests that were performed on patients a few years ago are no longer complete and possibly inaccurate today. As with all rapid change, medical providers can quickly fall behind or struggle to find up-to-date sources to ensure he or she provides optimum care. In this review, the authors provide the current state of the art for molecular profiling/precision medicine, practice standards, and a view into the future ahead.


Asunto(s)
Técnicas Genéticas , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisión , Biomarcadores/análisis , Humanos , Terapia Molecular Dirigida , Mutación , Neoplasias/diagnóstico
11.
Proc Natl Acad Sci U S A ; 120(29): e2221118120, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37428915

RESUMEN

Proposed genetic approaches for reducing human malaria include population modification, which introduces genes into vector mosquitoes to reduce or prevent parasite transmission. We demonstrate the potential of Cas9/guide RNA (gRNA)-based gene-drive systems linked to dual antiparasite effector genes to spread rapidly through mosquito populations. Two strains have an autonomous gene-drive system coupled to dual anti-Plasmodium falciparum effector genes comprising single-chain variable fragment monoclonal antibodies targeting parasite ookinetes and sporozoites in the African malaria mosquitoes Anopheles gambiae (AgTP13) and Anopheles coluzzii (AcTP13). The gene-drive systems achieved full introduction within 3 to 6 mo after release in small cage trials. Life-table analyses revealed no fitness loads affecting AcTP13 gene-drive dynamics but AgTP13 males were less competitive than wild types. The effector molecules reduced significantly both parasite prevalence and infection intensities. These data supported transmission modeling of conceptual field releases in an island setting that shows meaningful epidemiological impacts at different sporozoite threshold levels (2.5 to 10 k) for human infection by reducing malaria incidence in optimal simulations by 50 to 90% within as few as 1 to 2 mo after a series of releases, and by ≥90% within 3 mo. Modeling outcomes for low sporozoite thresholds are sensitive to gene-drive system fitness loads, gametocytemia infection intensities during parasite challenges, and the formation of potentially drive-resistant genome target sites, extending the predicted times to achieve reduced incidence. TP13-based strains could be effective for malaria control strategies following validation of sporozoite transmission threshold numbers and testing field-derived parasite strains. These or similar strains are viable candidates for future field trials in a malaria-endemic region.


Asunto(s)
Anopheles , Malaria Falciparum , Malaria , Animales , Masculino , Humanos , Anopheles/genética , Anopheles/parasitología , Mosquitos Vectores/genética , Malaria/prevención & control , Plasmodium falciparum/genética , Esporozoítos , Malaria Falciparum/parasitología
12.
Gastroenterology ; 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39236898

RESUMEN

BACKGROUND & AIMS: Unaffected first-degree relatives (FDRs) from families with ≥2 affected FDRs with Crohn's disease (CD, multiplex families) have a high risk of developing CD, although the underlying mechanisms driving this risk are poorly understood. We aimed to identify differences in biomarkers between FDRs from multiplex vs simplex families and investigate the risk of future CD onset accounting for potential confounders. METHODS: We assessed the Crohn's and Colitis Canada Genetic Environmental Microbial cohort of healthy FDRs of patients with CD. Genome-wide CD-polygenic risk scores, urinary fractional excretion of lactulose-to-mannitol ratio, fecal calprotectin (FCP), and fecal 16S ribosomal RNA microbiome were measured at recruitment. Associations between CD multiplex status and baseline biomarkers were determined using generalized estimating equations models. Cox models were used to assess the risk of future CD onset. RESULTS: There were 4051 participants from simplex families and 334 from CD multiplex families. CD multiplex status was significantly associated with higher baseline FCP (P = .026) but not with baseline CD-polygenic risk scores or the lactulose-to-mannitol ratio. Three bacterial genera were found to be differentially abundant between both groups. CD multiplex status at recruitment was independently associated with an increased risk of developing CD (adjusted hazard ratio, 3.65; 95% confidence interval, 2.18-6.11, P < .001). CONCLUSION: Within FDRs of patients with CD, participants from multiplex families had a 3-fold increased risk of CD onset, a higher FCP, and an altered bacterial composition, but not genetic burden or altered gut permeability. These results suggest that putative environmental factors might be enriched in FDRs from multiplex families.

13.
PLoS Comput Biol ; 20(5): e1012133, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38805562

RESUMEN

Novel mosquito genetic control tools, such as CRISPR-based gene drives, hold great promise in reducing the global burden of vector-borne diseases. As these technologies advance through the research and development pipeline, there is a growing need for modeling frameworks incorporating increasing levels of entomological and epidemiological detail in order to address questions regarding logistics and biosafety. Epidemiological predictions are becoming increasingly relevant to the development of target product profiles and the design of field trials and interventions, while entomological surveillance is becoming increasingly important to regulation and biosafety. We present MGDrivE 3 (Mosquito Gene Drive Explorer 3), a new version of a previously-developed framework, MGDrivE 2, that investigates the spatial population dynamics of mosquito genetic control systems and their epidemiological implications. The new framework incorporates three major developments: i) a decoupled sampling algorithm allowing the vector portion of the MGDrivE framework to be paired with a more detailed epidemiological framework, ii) a version of the Imperial College London malaria transmission model, which incorporates age structure, various forms of immunity, and human and vector interventions, and iii) a surveillance module that tracks mosquitoes captured by traps throughout the simulation. Example MGDrivE 3 simulations are presented demonstrating the application of the framework to a CRISPR-based homing gene drive linked to dual disease-refractory genes and their potential to interrupt local malaria transmission. Simulations are also presented demonstrating surveillance of such a system by a network of mosquito traps. MGDrivE 3 is freely available as an open-source R package on CRAN (https://cran.r-project.org/package=MGDrivE2) (version 2.1.0), and extensive examples and vignettes are provided. We intend the software to aid in understanding of human health impacts and biosafety of mosquito genetic control tools, and continue to iterate per feedback from the genetic control community.


Asunto(s)
Simulación por Computador , Tecnología de Genética Dirigida , Malaria , Control de Mosquitos , Mosquitos Vectores , Animales , Humanos , Mosquitos Vectores/genética , Control de Mosquitos/métodos , Malaria/epidemiología , Malaria/transmisión , Malaria/prevención & control , Tecnología de Genética Dirigida/métodos , Biología Computacional/métodos , Culicidae/genética , Algoritmos , Enfermedades Transmitidas por Vectores/transmisión , Enfermedades Transmitidas por Vectores/epidemiología , Enfermedades Transmitidas por Vectores/prevención & control , Dinámica Poblacional
14.
PLoS Comput Biol ; 20(5): e1012046, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38709820

RESUMEN

Genetic surveillance of mosquito populations is becoming increasingly relevant as genetics-based mosquito control strategies advance from laboratory to field testing. Especially applicable are mosquito gene drive projects, the potential scale of which leads monitoring to be a significant cost driver. For these projects, monitoring will be required to detect unintended spread of gene drive mosquitoes beyond field sites, and the emergence of alternative alleles, such as drive-resistant alleles or non-functional effector genes, within intervention sites. This entails the need to distribute mosquito traps efficiently such that an allele of interest is detected as quickly as possible-ideally when remediation is still viable. Additionally, insecticide-based tools such as bednets are compromised by insecticide-resistance alleles for which there is also a need to detect as quickly as possible. To this end, we present MGSurvE (Mosquito Gene SurveillancE): a computational framework that optimizes trap placement for genetic surveillance of mosquito populations such that the time to detection of an allele of interest is minimized. A key strength of MGSurvE is that it allows important biological features of mosquitoes and the landscapes they inhabit to be accounted for, namely: i) resources required by mosquitoes (e.g., food sources and aquatic breeding sites) can be explicitly distributed through a landscape, ii) movement of mosquitoes may depend on their sex, the current state of their gonotrophic cycle (if female) and resource attractiveness, and iii) traps may differ in their attractiveness profile. Example MGSurvE analyses are presented to demonstrate optimal trap placement for: i) an Aedes aegypti population in a suburban landscape in Queensland, Australia, and ii) an Anopheles gambiae population on the island of São Tomé, São Tomé and Príncipe. Further documentation and use examples are provided in project's documentation. MGSurvE is intended as a resource for both field and computational researchers interested in mosquito gene surveillance.


Asunto(s)
Control de Mosquitos , Animales , Control de Mosquitos/métodos , Culicidae/genética , Culicidae/fisiología , Biología Computacional/métodos , Tecnología de Genética Dirigida/métodos , Mosquitos Vectores/genética , Aedes/genética , Resistencia a los Insecticidas/genética , Femenino
15.
Am J Respir Crit Care Med ; 210(2): 155-166, 2024 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-38687499

RESUMEN

Critical care uses syndromic definitions to describe patient groups for clinical practice and research. There is growing recognition that a "precision medicine" approach is required and that integrated biologic and physiologic data identify reproducible subpopulations that may respond differently to treatment. This article reviews the current state of the field and considers how to successfully transition to a precision medicine approach. To impact clinical care, identification of subpopulations must do more than differentiate prognosis. It must differentiate response to treatment, ideally by defining subgroups with distinct functional or pathobiological mechanisms (endotypes). There are now multiple examples of reproducible subpopulations of sepsis, acute respiratory distress syndrome, and acute kidney or brain injury described using clinical, physiological, and/or biological data. Many of these subpopulations have demonstrated the potential to define differential treatment response, largely in retrospective studies, and that the same treatment-responsive subpopulations may cross multiple clinical syndromes (treatable traits). To bring about a change in clinical practice, a precision medicine approach must be evaluated in prospective clinical studies requiring novel adaptive trial designs. Several such studies are underway, but there are multiple challenges to be tackled. Such subpopulations must be readily identifiable and be applicable to all critically ill populations around the world. Subdividing clinical syndromes into subpopulations will require large patient numbers. Global collaboration of investigators, clinicians, industry, and patients over many years will therefore be required to transition to a precision medicine approach and ultimately realize treatment advances seen in other medical fields.


Asunto(s)
Cuidados Críticos , Unidades de Cuidados Intensivos , Medicina de Precisión , Humanos , Medicina de Precisión/métodos , Cuidados Críticos/métodos , Cuidados Críticos/normas , Consenso , Síndrome , Enfermedad Crítica/terapia , Fenotipo , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/diagnóstico , Síndrome de Dificultad Respiratoria/clasificación
16.
J Proteome Res ; 23(1): 52-70, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38048423

RESUMEN

Many COVID-19 survivors have post-COVID-19 conditions, and females are at a higher risk. We sought to determine (1) how protein levels change from acute to post-COVID-19 conditions, (2) whether females have a plasma protein signature different from that of males, and (3) which biological pathways are associated with COVID-19 when compared to restrictive lung disease. We measured protein levels in 74 patients on the day of admission and at 3 and 6 months after diagnosis. We determined protein concentrations by multiple reaction monitoring (MRM) using a panel of 269 heavy-labeled peptides. The predicted forced vital capacity (FVC) and diffusing capacity of the lungs for carbon monoxide (DLCO) were measured by routine pulmonary function testing. Proteins associated with six key lipid-related pathways increased from admission to 3 and 6 months; conversely, proteins related to innate immune responses and vasoconstriction-related proteins decreased. Multiple biological functions were regulated differentially between females and males. Concentrations of eight proteins were associated with FVC, %, and they together had c-statistics of 0.751 (CI:0.732-0.779); similarly, concentrations of five proteins had c-statistics of 0.707 (CI:0.676-0.737) for DLCO, %. Lipid biology may drive evolution from acute to post-COVID-19 conditions, while activation of innate immunity and vascular regulation pathways decreased over that period. (ProteomeXchange identifiers: PXD041762, PXD029437).


Asunto(s)
COVID-19 , Proteómica , Masculino , Femenino , Humanos , Pulmón , Capacidad Vital , Enfermedad Crónica , Lípidos
17.
Annu Rev Genomics Hum Genet ; 22: 309-338, 2021 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-33848430

RESUMEN

Since its introduction in 2011, noninvasive prenatal testing (NIPT) has spread rapidly around the world. It carries numerous benefits but also raises challenges, often related to sociocultural, legal, and economic contexts. This article describes the implementation of NIPT in nine countries, each with its own unique characteristics: Australia, Canada, China and Hong Kong, India, Israel, Lebanon, the Netherlands, the United Kingdom, and the United States. Themes covered for each country include the structure of the healthcare system, how NIPT is offered, counseling needs and resources, and cultural and legal context regarding disability and pregnancytermination. Some common issues emerge, including cost as a barrier to equitable access, the complexity of decision-making about public funding, and a shortage of appropriate resources that promote informed choice. Conversely, sociocultural values that underlie the use of NIPT vary greatly among countries. The issues described will become even more challenging as NIPT evolves from a second-tier to a first-tier screening test with expanded use.


Asunto(s)
Pruebas Prenatales no Invasivas , Australia , Canadá , China , Femenino , Humanos , Embarazo , Diagnóstico Prenatal , Estados Unidos
18.
Br J Cancer ; 131(8): 1328-1339, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39227409

RESUMEN

BACKGROUND: We developed a whole transcriptome sequencing (WTS)-based Consensus Molecular Subtypes (CMS) classifier using FFPE tissue and investigated its prognostic and predictive utility in a large clinico-genomic database of CRC patients (n = 24,939). METHODS: The classifier was trained against the original CMS datasets using an SVM model and validated in an independent blinded TCGA dataset (88.0% accuracy). Kaplan-Meier estimates of overall survival (OS) and time-on-treatment (TOT) were calculated for each CMS (p < 0.05 considered significant). RESULTS: CMS2 tumors were enriched on left-side of colon and conferred the longest median OS. In RAS-wildtype mCRC, left-sided tumors and CMS2 classification were associated with longer TOT with anti-EGFR antibodies (cetuximab and panitumumab). When restricting to only CMS2, there was no significant difference in TOT between right- versus left-sided tumors. CMS1 tumors were associated with a longer median TOT with pembrolizumab relative to other CMS groups, even when analyzing only microsatellite stable (MSS) tumors. DISCUSSION: A WTS-based CMS classifier allowed investigation of a large multi-institutional clinico-genomic mCRC cohort, suggesting anti-EGFR therapy benefit for right-sided RAS-WT CMS2 tumors and immune checkpoint inhibitor benefit for MSS CMS1. Routine CMS classification of CRC provides important treatment associations that should be further investigated.


Asunto(s)
Biomarcadores de Tumor , Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Biomarcadores de Tumor/genética , Femenino , Masculino , Pronóstico , Cetuximab/uso terapéutico , Cetuximab/administración & dosificación , Panitumumab/uso terapéutico , Anciano , Anticuerpos Monoclonales Humanizados/uso terapéutico , Persona de Mediana Edad , Estimación de Kaplan-Meier , Metástasis de la Neoplasia , Consenso
19.
N Engl J Med ; 385(9): 777-789, 2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34351722

RESUMEN

BACKGROUND: Thrombosis and inflammation may contribute to morbidity and mortality among patients with coronavirus disease 2019 (Covid-19). We hypothesized that therapeutic-dose anticoagulation would improve outcomes in critically ill patients with Covid-19. METHODS: In an open-label, adaptive, multiplatform, randomized clinical trial, critically ill patients with severe Covid-19 were randomly assigned to a pragmatically defined regimen of either therapeutic-dose anticoagulation with heparin or pharmacologic thromboprophylaxis in accordance with local usual care. The primary outcome was organ support-free days, evaluated on an ordinal scale that combined in-hospital death (assigned a value of -1) and the number of days free of cardiovascular or respiratory organ support up to day 21 among patients who survived to hospital discharge. RESULTS: The trial was stopped when the prespecified criterion for futility was met for therapeutic-dose anticoagulation. Data on the primary outcome were available for 1098 patients (534 assigned to therapeutic-dose anticoagulation and 564 assigned to usual-care thromboprophylaxis). The median value for organ support-free days was 1 (interquartile range, -1 to 16) among the patients assigned to therapeutic-dose anticoagulation and was 4 (interquartile range, -1 to 16) among the patients assigned to usual-care thromboprophylaxis (adjusted proportional odds ratio, 0.83; 95% credible interval, 0.67 to 1.03; posterior probability of futility [defined as an odds ratio <1.2], 99.9%). The percentage of patients who survived to hospital discharge was similar in the two groups (62.7% and 64.5%, respectively; adjusted odds ratio, 0.84; 95% credible interval, 0.64 to 1.11). Major bleeding occurred in 3.8% of the patients assigned to therapeutic-dose anticoagulation and in 2.3% of those assigned to usual-care pharmacologic thromboprophylaxis. CONCLUSIONS: In critically ill patients with Covid-19, an initial strategy of therapeutic-dose anticoagulation with heparin did not result in a greater probability of survival to hospital discharge or a greater number of days free of cardiovascular or respiratory organ support than did usual-care pharmacologic thromboprophylaxis. (REMAP-CAP, ACTIV-4a, and ATTACC ClinicalTrials.gov numbers, NCT02735707, NCT04505774, NCT04359277, and NCT04372589.).


Asunto(s)
Anticoagulantes/administración & dosificación , Tratamiento Farmacológico de COVID-19 , Heparina/administración & dosificación , Trombosis/prevención & control , Anciano , Anticoagulantes/efectos adversos , Anticoagulantes/uso terapéutico , COVID-19/mortalidad , Enfermedad Crítica , Femenino , Hemorragia/inducido químicamente , Heparina/efectos adversos , Heparina/uso terapéutico , Mortalidad Hospitalaria , Humanos , Modelos Logísticos , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Respiración Artificial , Insuficiencia del Tratamiento
20.
N Engl J Med ; 384(16): 1491-1502, 2021 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-33631065

RESUMEN

BACKGROUND: The efficacy of interleukin-6 receptor antagonists in critically ill patients with coronavirus disease 2019 (Covid-19) is unclear. METHODS: We evaluated tocilizumab and sarilumab in an ongoing international, multifactorial, adaptive platform trial. Adult patients with Covid-19, within 24 hours after starting organ support in the intensive care unit (ICU), were randomly assigned to receive tocilizumab (8 mg per kilogram of body weight), sarilumab (400 mg), or standard care (control). The primary outcome was respiratory and cardiovascular organ support-free days, on an ordinal scale combining in-hospital death (assigned a value of -1) and days free of organ support to day 21. The trial uses a Bayesian statistical model with predefined criteria for superiority, efficacy, equivalence, or futility. An odds ratio greater than 1 represented improved survival, more organ support-free days, or both. RESULTS: Both tocilizumab and sarilumab met the predefined criteria for efficacy. At that time, 353 patients had been assigned to tocilizumab, 48 to sarilumab, and 402 to control. The median number of organ support-free days was 10 (interquartile range, -1 to 16) in the tocilizumab group, 11 (interquartile range, 0 to 16) in the sarilumab group, and 0 (interquartile range, -1 to 15) in the control group. The median adjusted cumulative odds ratios were 1.64 (95% credible interval, 1.25 to 2.14) for tocilizumab and 1.76 (95% credible interval, 1.17 to 2.91) for sarilumab as compared with control, yielding posterior probabilities of superiority to control of more than 99.9% and of 99.5%, respectively. An analysis of 90-day survival showed improved survival in the pooled interleukin-6 receptor antagonist groups, yielding a hazard ratio for the comparison with the control group of 1.61 (95% credible interval, 1.25 to 2.08) and a posterior probability of superiority of more than 99.9%. All secondary analyses supported efficacy of these interleukin-6 receptor antagonists. CONCLUSIONS: In critically ill patients with Covid-19 receiving organ support in ICUs, treatment with the interleukin-6 receptor antagonists tocilizumab and sarilumab improved outcomes, including survival. (REMAP-CAP ClinicalTrials.gov number, NCT02735707.).


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Tratamiento Farmacológico de COVID-19 , Receptores de Interleucina-6/antagonistas & inhibidores , Adulto , Anciano , Anticuerpos Monoclonales Humanizados/efectos adversos , COVID-19/complicaciones , COVID-19/mortalidad , COVID-19/terapia , Enfermedad Crítica , Femenino , Mortalidad Hospitalaria , Humanos , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Respiración Artificial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA