Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
iScience ; 27(7): 110330, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39055933

RESUMEN

Prostate cancer screening using prostate-specific antigen (PSA) has been shown to reduce mortality but with substantial overdiagnosis, leading to unnecessary biopsies. The identification of a highly specific biomarker using liquid biopsies, represents an unmet need in the diagnostic pathway for prostate cancer. In this study, we employed a method that enriches for methylated cell-free DNA fragments coupled with a machine learning algorithm which enabled the detection of metastatic and localized cancers with AUCs of 0.96 and 0.74, respectively. The model also detected 51.8% (14/27) of localized and 88.7% (79/89) of patients with metastatic cancer in an external dataset. Furthermore, we show that the differentially methylated regions reflect epigenetic and transcriptomic changes at the tissue level. Notably, these regions are significantly enriched for biologically relevant pathways associated with the regulation of cellular proliferation and TGF-beta signaling. This demonstrates the potential of circulating tumor DNA methylation for prostate cancer detection and prognostication.

2.
J Cell Physiol ; 226(3): 638-51, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20717956

RESUMEN

Redistribution of acid-base transporters is a crucial regulatory mechanism for many types of cells to cope with extracellular pH changes. In epithelial cells, however, translocation of acid-base transporters ultimately leads to changes in vectorial transport of H+ and HCO3-. We have previously shown that the bicarbonate-secreting epithelium of salivary ducts responds to changes of systemic acid-base balance by adaptive redistribution of H+ and HCO3- transporters, thereby influencing the ionic composition and buffering capacity of saliva. However, the specific proteins involved in regulated vesicular traffic of acid-base transporters are largely unknown. In the present study we have investigated the impact of Rab11 family members on the acidosis-induced trafficking of the vacuolar-type H+-ATPase (V-ATPase) in salivary duct cells in vitro using the human submandibular cell line of ductal origin HSG as an experimental model. The results show that Rab11b is expressed in salivary ducts and exhibits a significantly higher co-localization with V-ATPase than Rab11a and Rab25. We also show that Rab11 but not Rab25 interacts with the ε subunit of V-ATPase. Extracellular acidosis up-regulates Rab11b expression and protein abundance in HSG cells and causes translocation of the V-ATPase from intracellular pools toward the plasma membrane. Loss-of-function experiments using specific siRNA either against Rab11b or against its effector Rip11 prevent acidosis-induced V-ATPase translocation. These data introduce Rab11b as a crucial regulator and Rip11 as mediator of acidosis-induced V-ATPase traffic in duct cells of submandibular gland.


Asunto(s)
Acidosis/enzimología , Proteínas Portadoras/metabolismo , Proteínas Mitocondriales/metabolismo , Conductos Salivales/enzimología , Conductos Salivales/patología , ATPasas de Translocación de Protón Vacuolares/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Acidosis/patología , Ácidos/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Línea Celular , Membrana Celular/enzimología , Espacio Extracelular/enzimología , Técnicas de Silenciamiento del Gen , Humanos , Espacio Intracelular/enzimología , Unión Proteica , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA