Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(21): 4514-4527.e14, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37757828

RESUMEN

Autozygosity is associated with rare Mendelian disorders and clinically relevant quantitative traits. We investigated associations between the fraction of the genome in runs of homozygosity (FROH) and common diseases in Genes & Health (n = 23,978 British South Asians), UK Biobank (n = 397,184), and 23andMe. We show that restricting analysis to offspring of first cousins is an effective way of reducing confounding due to social/environmental correlates of FROH. Within this group in G&H+UK Biobank, we found experiment-wide significant associations between FROH and twelve common diseases. We replicated associations with type 2 diabetes (T2D) and post-traumatic stress disorder via within-sibling analysis in 23andMe (median n = 480,282). We estimated that autozygosity due to consanguinity accounts for 5%-18% of T2D cases among British Pakistanis. Our work highlights the possibility of widespread non-additive genetic effects on common diseases and has important implications for global populations with high rates of consanguinity.


Asunto(s)
Consanguinidad , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/genética , Homocigoto , Fenotipo , Polimorfismo de Nucleótido Simple , Bancos de Muestras Biológicas , Genoma Humano , Predisposición Genética a la Enfermedad , Reino Unido
2.
Cell ; 184(18): 4612-4625.e14, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34352227

RESUMEN

The Middle East region is important to understand human evolution and migrations but is underrepresented in genomic studies. Here, we generated 137 high-coverage physically phased genome sequences from eight Middle Eastern populations using linked-read sequencing. We found no genetic traces of early expansions out-of-Africa in present-day populations but found Arabians have elevated Basal Eurasian ancestry that dilutes their Neanderthal ancestry. Population sizes within the region started diverging 15-20 kya, when Levantines expanded while Arabians maintained smaller populations that derived ancestry from local hunter-gatherers. Arabians suffered a population bottleneck around the aridification of Arabia 6 kya, while Levantines had a distinct bottleneck overlapping the 4.2 kya aridification event. We found an association between movement and admixture of populations in the region and the spread of Semitic languages. Finally, we identify variants that show evidence of selection, including polygenic selection. Our results provide detailed insights into the genomic and selective histories of the Middle East.


Asunto(s)
Genética de Población/historia , Genoma Humano , Animales , Cromosomas Humanos Y/genética , Bases de Datos Genéticas , Pool de Genes , Introgresión Genética , Geografía , Historia Antigua , Migración Humana , Humanos , Medio Oriente , Modelos Genéticos , Hombre de Neandertal/genética , Filogenia , Densidad de Población , Selección Genética , Análisis de Secuencia de ADN
3.
Nature ; 603(7903): 858-863, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35322230

RESUMEN

Genome-wide sequencing of human populations has revealed substantial variation among genes in the intensity of purifying selection acting on damaging genetic variants1. Although genes under the strongest selective constraint are highly enriched for associations with Mendelian disorders, most of these genes are not associated with disease and therefore the nature of the selection acting on them is not known2. Here we show that genetic variants that damage these genes are associated with markedly reduced reproductive success, primarily owing to increased childlessness, with a stronger effect in males than in females. We present evidence that increased childlessness is probably mediated by genetically associated cognitive and behavioural traits, which may mean that male carriers are less likely to find reproductive partners. This reduction in reproductive success may account for 20% of purifying selection against heterozygous variants that ablate protein-coding genes. Although this genetic association may only account for a very minor fraction of the overall likelihood of being childless (less than 1%), especially when compared to more influential sociodemographic factors, it may influence how genes evolve over time.


Asunto(s)
Reproducción , Selección Genética , Mapeo Cromosómico , Femenino , Heterocigoto , Humanos , Masculino , Fenotipo , Reproducción/genética
4.
Nature ; 600(7890): 675-679, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34887591

RESUMEN

Increased blood lipid levels are heritable risk factors of cardiovascular disease with varied prevalence worldwide owing to different dietary patterns and medication use1. Despite advances in prevention and treatment, in particular through reducing low-density lipoprotein cholesterol levels2, heart disease remains the leading cause of death worldwide3. Genome-wideassociation studies (GWAS) of blood lipid levels have led to important biological and clinical insights, as well as new drug targets, for cardiovascular disease. However, most previous GWAS4-23 have been conducted in European ancestry populations and may have missed genetic variants that contribute to lipid-level variation in other ancestry groups. These include differences in allele frequencies, effect sizes and linkage-disequilibrium patterns24. Here we conduct a multi-ancestry, genome-wide genetic discovery meta-analysis of lipid levels in approximately 1.65 million individuals, including 350,000 of non-European ancestries. We quantify the gain in studying non-European ancestries and provide evidence to support the expansion of recruitment of additional ancestries, even with relatively small sample sizes. We find that increasing diversity rather than studying additional individuals of European ancestry results in substantial improvements in fine-mapping functional variants and portability of polygenic prediction (evaluated in approximately 295,000 individuals from 7 ancestry groupings). Modest gains in the number of discovered loci and ancestry-specific variants were also achieved. As GWAS expand emphasis beyond the identification of genes and fundamental biology towards the use of genetic variants for preventive and precision medicine25, we anticipate that increased diversity of participants will lead to more accurate and equitable26 application of polygenic scores in clinical practice.


Asunto(s)
Enfermedades Cardiovasculares , Estudio de Asociación del Genoma Completo , Enfermedades Cardiovasculares/genética , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Desequilibrio de Ligamiento , Herencia Multifactorial , Polimorfismo de Nucleótido Simple/genética , Grupos de Población
5.
Trends Genet ; 39(11): 810-812, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37596117

RESUMEN

Twin and genomic studies indicate that genes play an important role in the development of cognitive ability. However, data limitations have made it difficult to pinpoint specific genes with a large impact. By examining the full gene sequences of >300 000 individuals, Chen et al. find eight such genes.

6.
N Engl J Med ; 388(17): 1559-1571, 2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37043637

RESUMEN

BACKGROUND: Pediatric disorders include a range of highly penetrant, genetically heterogeneous conditions amenable to genomewide diagnostic approaches. Finding a molecular diagnosis is challenging but can have profound lifelong benefits. METHODS: We conducted a large-scale sequencing study involving more than 13,500 families with probands with severe, probably monogenic, difficult-to-diagnose developmental disorders from 24 regional genetics services in the United Kingdom and Ireland. Standardized phenotypic data were collected, and exome sequencing and microarray analyses were performed to investigate novel genetic causes. We developed an iterative variant analysis pipeline and reported candidate variants to clinical teams for validation and diagnostic interpretation to inform communication with families. Multiple regression analyses were performed to evaluate factors affecting the probability of diagnosis. RESULTS: A total of 13,449 probands were included in the analyses. On average, we reported 1.0 candidate variant per parent-offspring trio and 2.5 variants per singleton proband. Using clinical and computational approaches to variant classification, we made a diagnosis in approximately 41% of probands (5502 of 13,449). Of 3599 probands in trios who received a diagnosis by clinical assertion, approximately 76% had a pathogenic de novo variant. Another 22% of probands (2997 of 13,449) had variants of uncertain significance in genes that were strongly linked to monogenic developmental disorders. Recruitment in a parent-offspring trio had the largest effect on the probability of diagnosis (odds ratio, 4.70; 95% confidence interval [CI], 4.16 to 5.31). Probands were less likely to receive a diagnosis if they were born extremely prematurely (i.e., 22 to 27 weeks' gestation; odds ratio, 0.39; 95% CI, 0.22 to 0.68), had in utero exposure to antiepileptic medications (odds ratio, 0.44; 95% CI, 0.29 to 0.67), had mothers with diabetes (odds ratio, 0.52; 95% CI, 0.41 to 0.67), or were of African ancestry (odds ratio, 0.51; 95% CI, 0.31 to 0.78). CONCLUSIONS: Among probands with severe, probably monogenic, difficult-to-diagnose developmental disorders, multimodal analysis of genomewide data had good diagnostic power, even after previous attempts at diagnosis. (Funded by the Health Innovation Challenge Fund and Wellcome Sanger Institute.).


Asunto(s)
Genómica , Enfermedades Raras , Niño , Humanos , Exoma , Irlanda/epidemiología , Reino Unido/epidemiología , Enfermedades Raras/diagnóstico , Enfermedades Raras/epidemiología , Enfermedades Raras/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Estudios de Asociación Genética , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Anomalías Congénitas/diagnóstico , Anomalías Congénitas/genética , Trastornos del Crecimiento/diagnóstico , Trastornos del Crecimiento/genética , Facies , Trastornos de la Conducta Infantil/diagnóstico , Trastornos de la Conducta Infantil/genética , Enfermedades Genéticas Congénitas/diagnóstico , Enfermedades Genéticas Congénitas/genética
7.
Nature ; 581(7809): 459-464, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32461653

RESUMEN

Naturally occurring human genetic variants that are predicted to inactivate protein-coding genes provide an in vivo model of human gene inactivation that complements knockout studies in cells and model organisms. Here we report three key findings regarding the assessment of candidate drug targets using human loss-of-function variants. First, even essential genes, in which loss-of-function variants are not tolerated, can be highly successful as targets of inhibitory drugs. Second, in most genes, loss-of-function variants are sufficiently rare that genotype-based ascertainment of homozygous or compound heterozygous 'knockout' humans will await sample sizes that are approximately 1,000 times those presently available, unless recruitment focuses on consanguineous individuals. Third, automated variant annotation and filtering are powerful, but manual curation remains crucial for removing artefacts, and is a prerequisite for recall-by-genotype efforts. Our results provide a roadmap for human knockout studies and should guide the interpretation of loss-of-function variants in drug development.


Asunto(s)
Genes Esenciales/efectos de los fármacos , Genes Esenciales/genética , Mutación con Pérdida de Función/genética , Terapia Molecular Dirigida , Artefactos , Automatización , Consanguinidad , Exones/genética , Mutación con Ganancia de Función/genética , Frecuencia de los Genes , Técnicas de Silenciamiento del Gen , Heterocigoto , Homocigoto , Humanos , Proteína Huntingtina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Enfermedades Neurodegenerativas/genética , Proteínas Priónicas/genética , Reproducibilidad de los Resultados , Tamaño de la Muestra , Proteínas tau/genética
8.
Nature ; 586(7831): 757-762, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33057194

RESUMEN

De novo mutations in protein-coding genes are a well-established cause of developmental disorders1. However, genes known to be associated with developmental disorders account for only a minority of the observed excess of such de novo mutations1,2. Here, to identify previously undescribed genes associated with developmental disorders, we integrate healthcare and research exome-sequence data from 31,058 parent-offspring trios of individuals with developmental disorders, and develop a simulation-based statistical test to identify gene-specific enrichment of de novo mutations. We identified 285 genes that were significantly associated with developmental disorders, including 28 that had not previously been robustly associated with developmental disorders. Although we detected more genes associated with developmental disorders, much of the excess of de novo mutations in protein-coding genes remains unaccounted for. Modelling suggests that more than 1,000 genes associated with developmental disorders have not yet been described, many of which are likely to be less penetrant than the currently known genes. Research access to clinical diagnostic datasets will be critical for completing the map of genes associated with developmental disorders.


Asunto(s)
Análisis Mutacional de ADN , Análisis de Datos , Bases de Datos Genéticas , Conjuntos de Datos como Asunto , Atención a la Salud/estadística & datos numéricos , Discapacidades del Desarrollo/genética , Enfermedades Genéticas Congénitas/genética , Estudios de Cohortes , Variaciones en el Número de Copia de ADN/genética , Discapacidades del Desarrollo/diagnóstico , Europa (Continente) , Femenino , Enfermedades Genéticas Congénitas/diagnóstico , Mutación de Línea Germinal/genética , Haploinsuficiencia/genética , Humanos , Masculino , Mutación Missense/genética , Penetrancia , Muerte Perinatal , Tamaño de la Muestra
9.
Am J Hum Genet ; 109(8): 1366-1387, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35931049

RESUMEN

A major challenge of genome-wide association studies (GWASs) is to translate phenotypic associations into biological insights. Here, we integrate a large GWAS on blood lipids involving 1.6 million individuals from five ancestries with a wide array of functional genomic datasets to discover regulatory mechanisms underlying lipid associations. We first prioritize lipid-associated genes with expression quantitative trait locus (eQTL) colocalizations and then add chromatin interaction data to narrow the search for functional genes. Polygenic enrichment analysis across 697 annotations from a host of tissues and cell types confirms the central role of the liver in lipid levels and highlights the selective enrichment of adipose-specific chromatin marks in high-density lipoprotein cholesterol and triglycerides. Overlapping transcription factor (TF) binding sites with lipid-associated loci identifies TFs relevant in lipid biology. In addition, we present an integrative framework to prioritize causal variants at GWAS loci, producing a comprehensive list of candidate causal genes and variants with multiple layers of functional evidence. We highlight two of the prioritized genes, CREBRF and RRBP1, which show convergent evidence across functional datasets supporting their roles in lipid biology.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Cromatina/genética , Genómica , Humanos , Lípidos/genética , Polimorfismo de Nucleótido Simple/genética
10.
Am J Hum Genet ; 108(11): 2186-2194, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34626536

RESUMEN

Structural variation (SV) describes a broad class of genetic variation greater than 50 bp in size. SVs can cause a wide range of genetic diseases and are prevalent in rare developmental disorders (DDs). Individuals presenting with DDs are often referred for diagnostic testing with chromosomal microarrays (CMAs) to identify large copy-number variants (CNVs) and/or with single-gene, gene-panel, or exome sequencing (ES) to identify single-nucleotide variants, small insertions/deletions, and CNVs. However, individuals with pathogenic SVs undetectable by conventional analysis often remain undiagnosed. Consequently, we have developed the tool InDelible, which interrogates short-read sequencing data for split-read clusters characteristic of SV breakpoints. We applied InDelible to 13,438 probands with severe DDs recruited as part of the Deciphering Developmental Disorders (DDD) study and discovered 63 rare, damaging variants in genes previously associated with DDs missed by standard SNV, indel, or CNV discovery approaches. Clinical review of these 63 variants determined that about half (30/63) were plausibly pathogenic. InDelible was particularly effective at ascertaining variants between 21 and 500 bp in size and increased the total number of potentially pathogenic variants identified by DDD in this size range by 42.9%. Of particular interest were seven confirmed de novo variants in MECP2, which represent 35.0% of all de novo protein-truncating variants in MECP2 among DDD study participants. InDelible provides a framework for the discovery of pathogenic SVs that are most likely missed by standard analytical workflows and has the potential to improve the diagnostic yield of ES across a broad range of genetic diseases.


Asunto(s)
Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Secuenciación del Exoma/métodos , Niño , Femenino , Humanos , Masculino , Proteína 2 de Unión a Metil-CpG/genética
11.
Nature ; 562(7726): 268-271, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30258228

RESUMEN

There are thousands of rare human disorders that are caused by single deleterious, protein-coding genetic variants1. However, patients with the same genetic defect can have different clinical presentations2-4, and some individuals who carry known disease-causing variants can appear unaffected5. Here, to understand what explains these differences, we study a cohort of 6,987 children assessed by clinical geneticists to have severe neurodevelopmental disorders such as global developmental delay and autism, often in combination with abnormalities of other organ systems. Although the genetic causes of these neurodevelopmental disorders are expected to be almost entirely monogenic, we show that 7.7% of variance in risk is attributable to inherited common genetic variation. We replicated this genome-wide common variant burden by showing, in an independent sample of 728 trios (comprising a child plus both parents) from the same cohort, that this burden is over-transmitted from parents to children with neurodevelopmental disorders. Our common-variant signal is significantly positively correlated with genetic predisposition to lower educational attainment, decreased intelligence and risk of schizophrenia. We found that common-variant risk was not significantly different between individuals with and without a known protein-coding diagnostic variant, which suggests that common-variant risk affects patients both with and without a monogenic diagnosis. In addition, previously published common-variant scores for autism, height, birth weight and intracranial volume were all correlated with these traits within our cohort, which suggests that phenotypic expression in individuals with monogenic disorders is affected by the same variants as in the general population. Our results demonstrate that common genetic variation affects both overall risk and clinical presentation in neurodevelopmental disorders that are typically considered to be monogenic.


Asunto(s)
Predisposición Genética a la Enfermedad , Variación Genética , Trastornos del Neurodesarrollo/genética , Enfermedades Raras/genética , Trastorno Autístico/genética , Peso al Nacer/genética , Estatura/genética , Estudios de Casos y Controles , Estudios de Cohortes , Discapacidades del Desarrollo/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Inteligencia/genética , Desequilibrio de Ligamiento , Masculino , Herencia Multifactorial/genética , Fenotipo , Esquizofrenia/genética
13.
PLoS Med ; 19(5): e1003981, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35587468

RESUMEN

BACKGROUND: Type 2 diabetes (T2D) is highly prevalent in British South Asians, yet they are underrepresented in research. Genes & Health (G&H) is a large, population study of British Pakistanis and Bangladeshis (BPB) comprising genomic and routine health data. We assessed the extent to which genetic risk for T2D is shared between BPB and European populations (EUR). We then investigated whether the integration of a polygenic risk score (PRS) for T2D with an existing risk tool (QDiabetes) could improve prediction of incident disease and the characterisation of disease subtypes. METHODS AND FINDINGS: In this observational cohort study, we assessed whether common genetic loci associated with T2D in EUR individuals were replicated in 22,490 BPB individuals in G&H. We replicated fewer loci in G&H (n = 76/338, 22%) than would be expected given power if all EUR-ascertained loci were transferable (n = 101, 30%; p = 0.001). Of the 27 transferable loci that were powered to interrogate this, only 9 showed evidence of shared causal variants. We constructed a T2D PRS and combined it with a clinical risk instrument (QDiabetes) in a novel, integrated risk tool (IRT) to assess risk of incident diabetes. To assess model performance, we compared categorical net reclassification index (NRI) versus QDiabetes alone. In 13,648 patients free from T2D followed up for 10 years, NRI was 3.2% for IRT versus QDiabetes (95% confidence interval (CI): 2.0% to 4.4%). IRT performed best in reclassification of individuals aged less than 40 years deemed low risk by QDiabetes alone (NRI 5.6%, 95% CI 3.6% to 7.6%), who tended to be free from comorbidities and slim. After adjustment for QDiabetes score, PRS was independently associated with progression to T2D after gestational diabetes (hazard ratio (HR) per SD of PRS 1.23, 95% CI 1.05 to 1.42, p = 0.028). Using cluster analysis of clinical features at diabetes diagnosis, we replicated previously reported disease subgroups, including Mild Age-Related, Mild Obesity-related, and Insulin-Resistant Diabetes, and showed that PRS distribution differs between subgroups (p = 0.002). Integrating PRS in this cluster analysis revealed a Probable Severe Insulin Deficient Diabetes (pSIDD) subgroup, despite the absence of clinical measures of insulin secretion or resistance. We also observed differences in rates of progression to micro- and macrovascular complications between subgroups after adjustment for confounders. Study limitations include the absence of an external replication cohort and the potential biases arising from missing or incorrect routine health data. CONCLUSIONS: Our analysis of the transferability of T2D loci between EUR and BPB indicates the need for larger, multiancestry studies to better characterise the genetic contribution to disease and its varied aetiology. We show that a T2D PRS optimised for this high-risk BPB population has potential clinical application in BPB, improving the identification of T2D risk (especially in the young) on top of an established clinical risk algorithm and aiding identification of subgroups at diagnosis, which may help future efforts to stratify care and treatment of the disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Pueblo Asiatico , Estudios de Cohortes , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/genética , Femenino , Humanos , Insulina , Pakistán/epidemiología , Factores de Riesgo
15.
Hum Mol Genet ; 28(20): 3391-3405, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31363758

RESUMEN

Reversible detyrosination of tubulin, the building block of microtubules, is crucial for neuronal physiology. Enzymes responsible for detyrosination were recently identified as complexes of vasohibins (VASHs) one or two with small VASH-binding protein (SVBP). Here we report three consanguineous families, each containing multiple individuals with biallelic inactivation of SVBP caused by truncating variants (p.Q28* and p.K13Nfs*18). Affected individuals show brain abnormalities with microcephaly, intellectual disability and delayed gross motor and speech development. Immunoblot testing in cells with pathogenic SVBP variants demonstrated that the encoded proteins were unstable and non-functional, resulting in a complete loss of VASH detyrosination activity. Svbp knockout mice exhibit drastic accumulation of tyrosinated tubulin and a reduction of detyrosinated tubulin in brain tissue. Similar alterations in tubulin tyrosination levels were observed in cultured neurons and associated with defects in axonal differentiation and architecture. Morphological analysis of the Svbp knockout mouse brains by anatomical magnetic resonance imaging showed a broad impact of SVBP loss, with a 7% brain volume decrease, numerous structural defects and a 30% reduction of some white matter tracts. Svbp knockout mice display behavioural defects, including mild hyperactivity, lower anxiety and impaired social behaviour. They do not, however, show prominent memory defects. Thus, SVBP-deficient mice recapitulate several features observed in human patients. Altogether, our data demonstrate that deleterious variants in SVBP cause this neurodevelopmental pathology, by leading to a major change in brain tubulin tyrosination and alteration of microtubule dynamics and neuron physiology.


Asunto(s)
Encéfalo/anomalías , Encéfalo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Neuronas/metabolismo , Tubulina (Proteína)/metabolismo , Animales , Proteínas Portadoras/metabolismo , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Femenino , Humanos , Immunoblotting , Imagen por Resonancia Magnética , Ratones , Microcefalia/genética , Microcefalia/metabolismo , Tirosina/metabolismo
16.
Twin Res Hum Genet ; 23(2): 137-138, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32482185

RESUMEN

I recount early formative experiences with my father, Nick Martin.


Asunto(s)
Genética Conductual/historia , Conducta Social/historia , Historia del Siglo XX , Historia del Siglo XXI , Humanos
17.
Mol Biol Evol ; 35(5): 1238-1252, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29688544

RESUMEN

The platypus is an egg-laying mammal which, alongside the echidna, occupies a unique place in the mammalian phylogenetic tree. Despite widespread interest in its unusual biology, little is known about its population structure or recent evolutionary history. To provide new insights into the dispersal and demographic history of this iconic species, we sequenced the genomes of 57 platypuses from across the whole species range in eastern mainland Australia and Tasmania. Using a highly improved reference genome, we called over 6.7 M SNPs, providing an informative genetic data set for population analyses. Our results show very strong population structure in the platypus, with our sampling locations corresponding to discrete groupings between which there is no evidence for recent gene flow. Genome-wide data allowed us to establish that 28 of the 57 sampled individuals had at least a third-degree relative among other samples from the same river, often taken at different times. Taking advantage of a sampled family quartet, we estimated the de novo mutation rate in the platypus at 7.0 × 10-9/bp/generation (95% CI 4.1 × 10-9-1.2 × 10-8/bp/generation). We estimated effective population sizes of ancestral populations and haplotype sharing between current groupings, and found evidence for bottlenecks and long-term population decline in multiple regions, and early divergence between populations in different regions. This study demonstrates the power of whole-genome sequencing for studying natural populations of an evolutionarily important species.


Asunto(s)
Distribución Animal , Ornitorrinco/genética , Animales , Australia , Femenino , Variación Genética , Endogamia , Masculino , Tasa de Mutación , Dinámica Poblacional , Secuenciación Completa del Genoma
18.
Hum Mol Genet ; 26(20): 3869-3882, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29016847

RESUMEN

The discovery of genetic variants influencing sleep patterns can shed light on the physiological processes underlying sleep. As part of a large clinical sequencing project, WGS500, we sequenced a family in which the two male children had severe developmental delay and a dramatically disturbed sleep-wake cycle, with very long wake and sleep durations, reaching up to 106-h awake and 48-h asleep. The most likely causal variant identified was a novel missense variant in the X-linked GRIA3 gene, which has been implicated in intellectual disability. GRIA3 encodes GluA3, a subunit of AMPA-type ionotropic glutamate receptors (AMPARs). The mutation (A653T) falls within the highly conserved transmembrane domain of the ion channel gate, immediately adjacent to the analogous residue in the Grid2 (glutamate receptor) gene, which is mutated in the mouse neurobehavioral mutant, Lurcher. In vitro, the GRIA3(A653T) mutation stabilizes the channel in a closed conformation, in contrast to Lurcher. We introduced the orthologous mutation into a mouse strain by CRISPR-Cas9 mutagenesis and found that hemizygous mutants displayed significant differences in the structure of their activity and sleep compared to wild-type littermates. Typically, mice are polyphasic, exhibiting multiple sleep bouts of sleep several minutes long within a 24-h period. The Gria3A653T mouse showed significantly fewer brief bouts of activity and sleep than the wild-types. Furthermore, Gria3A653T mice showed enhanced period lengthening under constant light compared to wild-type mice, suggesting an increased sensitivity to light. Our results suggest a role for GluA3 channel activity in the regulation of sleep behavior in both mice and humans.


Asunto(s)
Discapacidad Intelectual/genética , Mutación Puntual , Receptores AMPA/genética , Receptores AMPA/metabolismo , Trastornos del Sueño-Vigilia/genética , Adulto , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
19.
Am J Hum Genet ; 98(5): 830-842, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27087319

RESUMEN

Gastric adenocarcinoma and proximal polyposis of the stomach (GAPPS) is an autosomal-dominant cancer-predisposition syndrome with a significant risk of gastric, but not colorectal, adenocarcinoma. We mapped the gene to 5q22 and found loss of the wild-type allele on 5q in fundic gland polyps from affected individuals. Whole-exome and -genome sequencing failed to find causal mutations but, through Sanger sequencing, we identified point mutations in APC promoter 1B that co-segregated with disease in all six families. The mutations reduced binding of the YY1 transcription factor and impaired activity of the APC promoter 1B in luciferase assays. Analysis of blood and saliva from carriers showed allelic imbalance of APC, suggesting that these mutations lead to decreased allele-specific expression in vivo. Similar mutations in APC promoter 1B occur in rare families with familial adenomatous polyposis (FAP). Promoter 1A is methylated in GAPPS and sporadic FGPs and in normal stomach, which suggests that 1B transcripts are more important than 1A in gastric mucosa. This might explain why all known GAPPS-affected families carry promoter 1B point mutations but only rare FAP-affected families carry similar mutations, the colonic cells usually being protected by the expression of the 1A isoform. Gastric polyposis and cancer have been previously described in some FAP-affected individuals with large deletions around promoter 1B. Our finding that GAPPS is caused by point mutations in the same promoter suggests that families with mutations affecting the promoter 1B are at risk of gastric adenocarcinoma, regardless of whether or not colorectal polyps are present.


Asunto(s)
Adenocarcinoma/genética , Proteína de la Poliposis Adenomatosa del Colon/genética , Poliposis Adenomatosa del Colon/genética , Pólipos Adenomatosos/genética , Exones/genética , Mutación Puntual/genética , Neoplasias Gástricas/genética , Desequilibrio Alélico/genética , Variaciones en el Número de Copia de ADN/genética , Exoma/genética , Femenino , Mucosa Gástrica/metabolismo , Ligamiento Genético/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Pérdida de Heterocigocidad , Masculino , Linaje , Regiones Promotoras Genéticas/genética
20.
Am J Hum Genet ; 98(5): 898-908, 2016 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-27132594

RESUMEN

Spontaneous dizygotic (DZ) twinning occurs in 1%-4% of women, with familial clustering and unknown physiological pathways and genetic origin. DZ twinning might index increased fertility and has distinct health implications for mother and child. We performed a GWAS in 1,980 mothers of spontaneous DZ twins and 12,953 control subjects. Findings were replicated in a large Icelandic cohort and tested for association across a broad range of fertility traits in women. Two SNPs were identified (rs11031006 near FSHB, p = 1.54 × 10(-9), and rs17293443 in SMAD3, p = 1.57 × 10(-8)) and replicated (p = 3 × 10(-3) and p = 1.44 × 10(-4), respectively). Based on ∼90,000 births in Iceland, the risk of a mother delivering twins increased by 18% for each copy of allele rs11031006-G and 9% for rs17293443-C. A higher polygenic risk score (PRS) for DZ twinning, calculated based on the results of the DZ twinning GWAS, was significantly associated with DZ twinning in Iceland (p = 0.001). A higher PRS was also associated with having children (p = 0.01), greater lifetime parity (p = 0.03), and earlier age at first child (p = 0.02). Allele rs11031006-G was associated with higher serum FSH levels, earlier age at menarche, earlier age at first child, higher lifetime parity, lower PCOS risk, and earlier age at menopause. Conversely, rs17293443-C was associated with later age at last child. We identified robust genetic risk variants for DZ twinning: one near FSHB and a second within SMAD3, the product of which plays an important role in gonadal responsiveness to FSH. These loci contribute to crucial aspects of reproductive capacity and health.


Asunto(s)
Fertilidad/genética , Variación Genética/genética , Síndrome del Ovario Poliquístico/genética , Gemelos Dicigóticos/genética , Ansiedad/genética , Estudios de Casos y Controles , Depresión/genética , Familia , Femenino , Hormona Folículo Estimulante/sangre , Estudio de Asociación del Genoma Completo , Humanos , Estudios Longitudinales , Masculino , Madres , Síndrome del Ovario Poliquístico/sangre , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA