Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 367
Filtrar
Más filtros

Intervalo de año de publicación
1.
PLoS Pathog ; 20(5): e1011835, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38758969

RESUMEN

A novel group of biocidal compounds are the Crystal 3D (Cry) and Cytolytic (Cyt) proteins produced by Bacillus thuringiensis (Bt). Some Bt Cry proteins have a selective nematocidal activity, with Cry5B being the most studied. Cry5B kills nematode parasites by binding selectively to membrane glycosphingolipids, then forming pores in the cell membranes of the intestine leading to damage. Cry5B selectively targets multiple species of nematodes from different clades and has no effect against mammalian hosts. Levamisole is a cholinergic anthelmintic that acts by selectively opening L-subtype nicotinic acetylcholine receptor ion-channels (L-AChRs) that have been found on muscles of nematodes. A synergistic nematocidal interaction between levamisole and Cry5B at the whole-worm level has been described previously, but the location, mechanism and time-course of this synergism is not known. In this study we follow the timeline of the effects of levamisole and Cry5B on the Ca2+ levels in enterocyte cells in the intestine of Ascaris suum using fluorescence imaging. The peak Ca2+ responses to levamisole were observed after approximately 10 minutes while the peak responses to activated Cry5B were observed after approximately 80 minutes. When levamisole and Cry5B were applied simultaneously, we observed that the responses to Cry5B were bigger and occurred sooner than when it was applied by itself. It is proposed that the synergism is due to the cytoplasmic Ca2+ overload that is induced by the combination of levamisole opening Ca2+ permeable L-subtype nAChRs and the Ca2+ permeable Cry5B toxin pores produced in the enterocyte plasma membranes. The effect of levamisole potentiates and speeds the actions of Cry5B that gives rise to bigger Ca2+ overloads that accelerates cell-death of the enterocytes.


Asunto(s)
Ascaris suum , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas , Endotoxinas , Proteínas Hemolisinas , Levamisol , Levamisol/farmacología , Animales , Toxinas de Bacillus thuringiensis/farmacología , Endotoxinas/farmacología , Endotoxinas/metabolismo , Proteínas Hemolisinas/farmacología , Proteínas Hemolisinas/metabolismo , Proteínas Bacterianas/metabolismo , Ascaris suum/efectos de los fármacos , Antihelmínticos/farmacología , Intestinos/efectos de los fármacos , Intestinos/parasitología , Sinergismo Farmacológico , Antinematodos/farmacología , Bacillus thuringiensis/efectos de los fármacos
2.
Proc Natl Acad Sci U S A ; 119(34): e2111932119, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35969762

RESUMEN

Glutamate-gated chloride channels (GluCls) are unique to invertebrates and are targeted by macrocyclic lactones. In this study, we cloned an AVR-14B GluCl subunit from adult Brugia malayi, a causative agent of lymphatic filariasis in humans. To elucidate this channel's pharmacological properties, we used Xenopus laevis oocytes for expression and performed two-electrode voltage-clamp electrophysiology. The receptor was gated by the natural ligand L-glutamate (effective concentration, 50% [EC50] = 0.4 mM) and ivermectin (IVM; EC50 = 1.8 nM). We also characterized the effects of nodulisporic acid (NA) on Bma-AVR-14B and NA-produced dual effects on the receptor as an agonist and a type II positive allosteric modulator. Here we report characterization of the complex activity of NA on a nematode GluCl. Bma-AVR-14B demonstrated some unique pharmacological characteristics. IVM did not produce potentiation of L-glutamate-mediated responses but instead, reduced the channel's sensitivity for the ligand. Further electrophysiological exploration showed that IVM (at a moderate concentration of 0.1 nM) functioned as an inhibitor of both agonist and positive allosteric modulatory effects of NA. This suggests that IVM and NA share a complex interaction. The pharmacological properties of Bma-AVR-14B indicate that the channel is an important target of IVM and NA. In addition, the unique electrophysiological characteristics of Bma-AVR-14B could explain the observed variation in drug sensitivities of various nematode parasites. We have also shown the inhibitory effects of IVM and NA on adult worm motility using Worminator. RNA interference (RNAi) knockdown suggests that AVR-14 plays a role in influencing locomotion in B. malayi.


Asunto(s)
Brugia Malayi , Canales de Cloruro , Indoles , Animales , Brugia Malayi/efectos de los fármacos , Brugia Malayi/genética , Brugia Malayi/metabolismo , Canales de Cloruro/efectos de los fármacos , Canales de Cloruro/genética , Canales de Cloruro/metabolismo , Ácido Glutámico/metabolismo , Indoles/farmacología , Ivermectina/farmacología , Ligandos
3.
J Pediatr ; 271: 114042, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38570031

RESUMEN

OBJECTIVE: The objective of this study was to examine the association of cardiorespiratory events, including apnea, periodic breathing, intermittent hypoxemia (IH), and bradycardia, with late-onset sepsis for extremely preterm infants (<29 weeks of gestational age) on vs off invasive mechanical ventilation. STUDY DESIGN: This is a retrospective analysis of data from infants enrolled in Pre-Vent (ClinicalTrials.gov identifier NCT03174301), an observational study in 5 level IV neonatal intensive care units. Clinical data were analyzed for 737 infants (mean gestational age: 26.4 weeks, SD 1.71). Monitoring data were available and analyzed for 719 infants (47 512 patient-days); of whom, 109 had 123 sepsis events. Using continuous monitoring data, we quantified apnea, periodic breathing, bradycardia, and IH. We analyzed the relationships between these daily measures and late-onset sepsis (positive blood culture >72 hours after birth and ≥5-day antibiotics). RESULTS: For infants not on a ventilator, apnea, periodic breathing, and bradycardia increased before sepsis diagnosis. During times on a ventilator, increased sepsis risk was associated with longer events with oxygen saturation <80% (IH80) and more bradycardia events before sepsis. IH events were associated with higher sepsis risk but did not dynamically increase before sepsis, regardless of ventilator status. A multivariable model including postmenstrual age, cardiorespiratory variables (apnea, periodic breathing, IH80, and bradycardia), and ventilator status predicted sepsis with an area under the receiver operator characteristic curve of 0.783. CONCLUSION: We identified cardiorespiratory signatures of late-onset sepsis. Longer IH events were associated with increased sepsis risk but did not change temporally near diagnosis. Increases in bradycardia, apnea, and periodic breathing preceded the clinical diagnosis of sepsis.


Asunto(s)
Apnea , Bradicardia , Hipoxia , Recien Nacido Extremadamente Prematuro , Sepsis , Humanos , Bradicardia/epidemiología , Bradicardia/etiología , Apnea/epidemiología , Estudios Retrospectivos , Recién Nacido , Hipoxia/complicaciones , Femenino , Masculino , Sepsis/complicaciones , Sepsis/epidemiología , Enfermedades del Prematuro/epidemiología , Enfermedades del Prematuro/diagnóstico , Respiración Artificial , Unidades de Cuidado Intensivo Neonatal , Edad Gestacional
4.
Pediatr Res ; 95(4): 1060-1069, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37857848

RESUMEN

BACKGROUND: In extremely preterm infants, persistence of cardioventilatory events is associated with long-term morbidity. Therefore, the objective was to characterize physiologic growth curves of apnea, periodic breathing, intermittent hypoxemia, and bradycardia in extremely preterm infants during the first few months of life. METHODS: The Prematurity-Related Ventilatory Control study included 717 preterm infants <29 weeks gestation. Waveforms were downloaded from bedside monitors with a novel sharing analytics strategy utilized to run software locally, with summary data sent to the Data Coordinating Center for compilation. RESULTS: Apnea, periodic breathing, and intermittent hypoxemia events rose from day 3 of life then fell to near-resolution by 8-12 weeks of age. Apnea/intermittent hypoxemia were inversely correlated with gestational age, peaking at 3-4 weeks of age. Periodic breathing was positively correlated with gestational age peaking at 31-33 weeks postmenstrual age. Females had more periodic breathing but less intermittent hypoxemia/bradycardia. White infants had more apnea/periodic breathing/intermittent hypoxemia. Infants never receiving mechanical ventilation followed similar postnatal trajectories but with less apnea and intermittent hypoxemia, and more periodic breathing. CONCLUSIONS: Cardioventilatory events peak during the first month of life but the actual postnatal trajectory is dependent on the type of event, race, sex and use of mechanical ventilation. IMPACT: Physiologic curves of cardiorespiratory events in extremely preterm-born infants offer (1) objective measures to assess individual patient courses and (2) guides for research into control of ventilation, biomarkers and outcomes. Presented are updated maturational trajectories of apnea, periodic breathing, intermittent hypoxemia, and bradycardia in 717 infants born <29 weeks gestation from the multi-site NHLBI-funded Pre-Vent study. Cardioventilatory events peak during the first month of life but the actual postnatal trajectory is dependent on the type of event, race, sex and use of mechanical ventilation. Different time courses for apnea and periodic breathing suggest different maturational mechanisms.


Asunto(s)
Enfermedades del Prematuro , Trastornos Respiratorios , Lactante , Femenino , Recién Nacido , Humanos , Recien Nacido Extremadamente Prematuro , Apnea , Bradicardia/terapia , Respiración , Hipoxia
5.
Am J Respir Crit Care Med ; 208(1): 79-97, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37219236

RESUMEN

Rationale: Immature control of breathing is associated with apnea, periodic breathing, intermittent hypoxemia, and bradycardia in extremely preterm infants. However, it is not clear if such events independently predict worse respiratory outcome. Objectives: To determine if analysis of cardiorespiratory monitoring data can predict unfavorable respiratory outcomes at 40 weeks postmenstrual age (PMA) and other outcomes, such as bronchopulmonary dysplasia at 36 weeks PMA. Methods: The Prematurity-related Ventilatory Control (Pre-Vent) study was an observational multicenter prospective cohort study including infants born at <29 weeks of gestation with continuous cardiorespiratory monitoring. The primary outcome was either "favorable" (alive and previously discharged or inpatient and off respiratory medications/O2/support at 40 wk PMA) or "unfavorable" (either deceased or inpatient/previously discharged on respiratory medications/O2/support at 40 wk PMA). Measurements and Main Results: A total of 717 infants were evaluated (median birth weight, 850 g; gestation, 26.4 wk), 53.7% of whom had a favorable outcome and 46.3% of whom had an unfavorable outcome. Physiologic data predicted unfavorable outcome, with accuracy improving with advancing age (area under the curve, 0.79 at Day 7, 0.85 at Day 28 and 32 wk PMA). The physiologic variable that contributed most to prediction was intermittent hypoxemia with oxygen saturation as measured by pulse oximetry <90%. Models with clinical data alone or combining physiologic and clinical data also had good accuracy, with areas under the curve of 0.84-0.85 at Days 7 and 14 and 0.86-0.88 at Day 28 and 32 weeks PMA. Intermittent hypoxemia with oxygen saturation as measured by pulse oximetry <80% was the major physiologic predictor of severe bronchopulmonary dysplasia and death or mechanical ventilation at 40 weeks PMA. Conclusions: Physiologic data are independently associated with unfavorable respiratory outcome in extremely preterm infants.


Asunto(s)
Displasia Broncopulmonar , Recien Nacido Extremadamente Prematuro , Lactante , Recién Nacido , Humanos , Estudios Prospectivos , Respiración Artificial , Hipoxia
6.
Antimicrob Agents Chemother ; 67(10): e0041923, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37728916

RESUMEN

Filarial nematode infections are a major health concern in several countries. Lymphatic filariasis is caused by Wuchereria bancrofti and Brugia spp. affecting over 120 million people. Heavy infections can lead to elephantiasis, which has serious effects on individuals' lives. Although current anthelmintics are effective at killing microfilariae in the bloodstream, they have little to no effect against adult parasites found in the lymphatic system. The anthelmintic diethylcarbamazine is one of the central pillars of lymphatic filariasis control. Recent studies have reported that diethylcarbamazine can open transient receptor potential (TRP) channels in the muscles of adult female Brugia malayi, leading to contraction and paralysis. Diethylcarbamazine has synergistic effects in combination with emodepside on Brugia, inhibiting motility: emodepside is an anthelmintic that has effects on filarial nematodes and is under trial for the treatment of river blindness. Here, we have studied the effects of diethylcarbamazine on single Brugia muscle cells by measuring the change in Ca2+ fluorescence in the muscle using Ca2+-imaging techniques. Diethylcarbamazine interacts with the transient receptor potential channel, C classification (TRPC) ortholog receptor TRP-2 to promote Ca2+ entry into the Brugia muscle cells, which can activate Slopoke (SLO-1) Ca2+-activated K+ channels, the putative target of emodepside. A combination of diethylcarbamazine and emodepside leads to a bigger Ca2+ signal than when either compound is applied alone. Our study shows that diethylcarbamazine targets TRP channels to promote Ca2+ entry that is increased by emodepside activation of SLO-1 K+ channels.


Asunto(s)
Antihelmínticos , Brugia Malayi , Filariasis Linfática , Canales de Potencial de Receptor Transitorio , Animales , Adulto , Femenino , Humanos , Dietilcarbamazina/farmacología , Dietilcarbamazina/uso terapéutico , Brugia Malayi/fisiología , Filariasis Linfática/tratamiento farmacológico , Filariasis Linfática/parasitología , Canales de Potencial de Receptor Transitorio/farmacología , Canales de Potencial de Receptor Transitorio/uso terapéutico , Antihelmínticos/farmacología , Músculos
7.
PLoS Pathog ; 17(2): e1008982, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33544769

RESUMEN

In the absence of efficient alternative strategies, the control of parasitic nematodes, impacting human and animal health, mainly relies on the use of broad-spectrum anthelmintic compounds. Unfortunately, most of these drugs have a limited single-dose efficacy against infections caused by the whipworm, Trichuris. These infections are of both human and veterinary importance. However, in contrast to a wide range of parasitic nematode species, the narrow-spectrum anthelmintic oxantel has a high efficacy on Trichuris spp. Despite this knowledge, the molecular target(s) of oxantel within Trichuris is still unknown. In the distantly related pig roundworm, Ascaris suum, oxantel has a small, but significant effect on the recombinant homomeric Nicotine-sensitive ionotropic acetylcholine receptor (N-AChR) made up of five ACR-16 subunits. Therefore, we hypothesized that in whipworms, a putative homolog of an ACR-16 subunit, can form a functional oxantel-sensitive receptor. Using the pig whipworm T. suis as a model, we identified and cloned a novel ACR-16-like subunit and successfully expressed the corresponding homomeric channel in Xenopus laevis oocytes. Electrophysiological experiments revealed this receptor to have distinctive pharmacological properties with oxantel acting as a full agonist, hence we refer to the receptor as an O-AChR subtype. Pyrantel activated this novel O-AChR subtype moderately, whereas classic nicotinic agonists surprisingly resulted in only minor responses. We observed that the expression of the ACR-16-like subunit in the free-living nematode Caenorhabditis elegans conferred an increased sensitivity to oxantel of recombinant worms. We demonstrated that the novel Tsu-ACR-16-like receptor is indeed a target for oxantel, although other receptors may be involved. These finding brings new insight into the understanding of the high sensitivity of whipworms to oxantel, and highlights the importance of the discovery of additional distinct receptor subunit types within Trichuris that can be used as screening tools to evaluate the effect of new synthetic or natural anthelmintic compounds.


Asunto(s)
Antinematodos/farmacología , Proteínas del Helminto/antagonistas & inhibidores , Pirantel/análogos & derivados , Receptores Colinérgicos/química , Tricuriasis/tratamiento farmacológico , Trichuris/efectos de los fármacos , Animales , Caenorhabditis elegans/efectos de los fármacos , Femenino , Proteínas del Helminto/clasificación , Proteínas del Helminto/metabolismo , Masculino , Pirantel/farmacología , Receptores Colinérgicos/clasificación , Receptores Colinérgicos/metabolismo , Porcinos , Tricuriasis/metabolismo , Tricuriasis/parasitología , Xenopus laevis/metabolismo
8.
Pediatr Res ; 94(4): 1444-1450, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37188801

RESUMEN

BACKGROUND: Intermittent hypoxemia (IH) events are common in preterm neonates and are associated with adverse outcomes. Animal IH models can induce oxidative stress. We hypothesized that an association exists between IH and elevated peroxidation products in preterm neonates. METHODS: Time in hypoxemia, frequency of IH, and duration of IH events were assessed from a prospective cohort of 170 neonates (<31 weeks gestation). Urine was collected at 1 week and 1 month. Samples were analyzed for lipid, protein, and DNA oxidation biomarkers. RESULTS: At 1 week, adjusted multiple quantile regression showed positive associations between several hypoxemia parameters with various individual quantiles of isofurans, neurofurans, dihomo-isoprostanes, dihomo-isofurans, and ortho-tyrosine and a negative correlation with dihomo-isoprostanes and meta-tyrosine. At 1 month, positive associations were found between several hypoxemia parameters with quantiles of isoprostanes, dihomo-isoprostanes and dihomo-isofurans and a negative correlation with isoprostanes, isofurans, neuroprostanes, and meta-tyrosine. CONCLUSIONS: Preterm neonates experience oxidative damage to lipids, proteins, and DNA that can be analyzed from urine samples. Our single-center data suggest that specific markers of oxidative stress may be related to IH exposure. Future studies are needed to better understand mechanisms and relationships to morbidities of prematurity. IMPACT: Hypoxemia events are frequent in preterm infants and are associated with poor outcomes. The mechanisms by which hypoxemia events result in adverse neural and respiratory outcomes may include oxidative stress to lipids, proteins, and DNA. This study begins to explore associations between hypoxemia parameters and products of oxidative stress in preterm infants. Oxidative stress biomarkers may assist in identifying high-risk neonates.


Asunto(s)
Recien Nacido Prematuro , Isoprostanos , Lactante , Animales , Humanos , Recién Nacido , Estudios Prospectivos , Hipoxia , Estrés Oxidativo , Biomarcadores/orina , ADN
9.
J Allergy Clin Immunol ; 149(6): 1970-1980, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35034774

RESUMEN

BACKGROUND: Refractory asthma (RA) remains poorly controlled, resulting in high health care utilization despite guideline-based therapies. Patients with RA manifest higher neutrophilia as a result of increased airway inflammation and subclinical infection, the underlying mechanisms of which remain unclear. OBJECTIVE: We sought to characterize and clinically correlate gene expression differences between refractory and nonrefractory (NR) asthma to uncover molecular mechanisms driving group distinctions. METHODS: Microarray gene expression of paired airway epithelial brush and endobronchial biopsy samples was compared between 60 RA and 30 NR subjects. Subjects were hierarchically clustered to identify subgroups of RA, and biochemical and clinical traits (airway inflammatory molecules, respiratory pathogens, chest imaging) were compared between groups. Weighted gene correlation network analysis was used to identify coexpressed gene modules. Module expression scores were compared between groups using linear regression, controlling for age, sex, and body mass index. RESULTS: Differential gene expression analysis showed upregulation of proneutrophilic and downregulation of ciliary function genes/pathways in RA compared to NR. A subgroup of RA with downregulated ciliary gene expression had increased levels of subclinical infections, airway neutrophilia, and eosinophilia as well as higher chest imaging mucus burden compared to other RA, the dominant differences between RA and NR. Weighted gene correlation network analysis identified gene modules related to ciliary function, which were downregulated in RA and were associated with lower pulmonary function and higher airway wall thickness/inflammation, markers of poorer asthma control. CONCLUSIONS: Identification of a novel ciliary-deficient subgroup of RA suggests that diminished mucociliary clearance may underlie repeated asthma exacerbations despite adequate treatment, necessitating further exploration of function, mechanism, and therapeutics.


Asunto(s)
Asma , Asma/metabolismo , Biomarcadores , Broncoscopía , Humanos , Inflamación/metabolismo , Pulmón/patología , Depuración Mucociliar
10.
PLoS Pathog ; 16(4): e1008396, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32243475

RESUMEN

Nematode parasites infect approximately 1.5 billion people globally and are a significant public health concern. There is an accepted need for new, more effective anthelmintic drugs. Nicotinic acetylcholine receptors on parasite nerve and somatic muscle are targets of the cholinomimetic anthelmintics, while glutamate-gated chloride channels in the pharynx of the nematode are affected by the avermectins. Here we describe a novel nicotinic acetylcholine receptor on the nematode pharynx that is a potential new drug target. This homomeric receptor is comprised of five non-α EAT-2 subunits and is not sensitive to existing cholinomimetic anthelmintics. We found that EAT-18, a novel auxiliary subunit protein, is essential for functional expression of the receptor. EAT-18 directly interacts with the mature receptor, and different homologs alter the pharmacological properties. Thus we have described not only a novel potential drug target but also a new type of obligate auxiliary protein for nAChRs.


Asunto(s)
Antinematodos/farmacología , Ascaris suum/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas del Helminto/metabolismo , Faringe/metabolismo , Receptores Nicotínicos/metabolismo , Acetilcolina/farmacología , Animales , Ascaris suum/efectos de los fármacos , Ascaris suum/genética , Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas del Helminto/genética , Faringe/efectos de los fármacos , Receptores Nicotínicos/genética
11.
Pediatr Res ; 91(6): 1391-1398, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33958714

RESUMEN

BACKGROUND: Continuous positive airway pressure (CPAP) in preterm infants is initially beneficial, but animal models suggest longer term detrimental airway effects towards asthma. We used a neonatal CPAP mouse model and human fetal airway smooth muscle (ASM) to investigate the role of extracellular calcium-sensing receptor (CaSR) in these effects. METHODS: Newborn wild type and smooth muscle-specific CaSR-/- mice were given CPAP for 7 days via a custom device (mimicking CPAP in premature infants), and recovered in normoxia for another 14 days (representing infants at 3-4 years). Airway reactivity was tested using lung slices, and airway CaSR quantified. Role of CaSR was tested using NPS2143 (inhibitor) or siRNA in WT mice. Fetal ASM cells stretched cyclically with/without static stretch mimicking breathing and CPAP were analyzed for intracellular Ca2+ ([Ca2+]i) responses, role of CaSR, and signaling cascades. RESULTS: CPAP increased airway reactivity in WT but not CaSR-/- mice, increasing ASM CaSR. NPS2143 or CaSR siRNA reversed CPAP effects in WT mice. CPAP increased fetal ASM [Ca2+]I, blocked by NPS2143, and increased ERK1/2 and RhoA suggesting two mechanisms by which stretch increases CaSR. CONCLUSIONS: These data implicate CaSR in CPAP effects on airway function with implications for wheezing in former preterm infants. IMPACT: Neonatal CPAP increases airway reactivity to bronchoconstrictor agonist. CPAP increases smooth muscle expression of the extracellular calcium-sensing receptor (CaSR). Inhibition or absence of CaSR blunts CPAP effects on contractility. These data suggest a causal/contributory role for CaSR in stretch effects on the developing airway. These data may impact clinical recognition of the ways that CPAP may contribute to wheezing disorders of former preterm infants.


Asunto(s)
Presión de las Vías Aéreas Positiva Contínua , Receptores Sensibles al Calcio , Animales , Humanos , Recién Nacido , Recien Nacido Prematuro , Ratones , Ratones Noqueados , ARN Interferente Pequeño , Receptores Sensibles al Calcio/genética , Ruidos Respiratorios
12.
Pediatr Res ; 92(3): 685-693, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34750521

RESUMEN

BACKGROUND: Continuous positive airway pressure (CPAP) is a primary mode of respiratory support for preterm infants. Animal studies have shown long-term detrimental effects on lung/airway development, particularly airway (AW) hyper-reactivity, as an unfortunate consequence of neonatal CPAP. Since the hyaluronan (HA) synthesizing enzyme hyaluronan synthase-3 (HAS3) is involved in various adult pulmonary disorders, the present study used a neonatal mouse model to investigate the role of HAS3 in CPAP-induced AW hyper-reactivity. METHODS: Male and female neonatal mice were fitted with a custom-made mask for delivery of daily CPAP 3 h/day for 7 days. At postnatal day 21 (2 weeks after CPAP ended), airway (AW) hyper-reactivity and HAS3 expression were assessed with and without in vitro HAS3 siRNA treatment. RESULTS: MRIs of 3-day-old mice confirmed that CPAP increased lung volume with incrementing inflation pressures. CPAP increased AW reactivity in both male and female mice, which was associated with increased airway smooth muscle and epithelial HAS3 immunoreactivity. CPAP did not affect HA accumulation, but HAS3 siRNA reversed CPAP-induced AW hyper-reactivity and reduced HAS3 expression. CONCLUSIONS: These data in mice implicate a role for HAS3 in long-term effects of CPAP in the developing airway in the context of preterm birth and CPAP therapy. IMPACT: Neonatal CPAP increases airway smooth muscle and epithelial HAS3 expression in mice. CPAP-induced airway hyper-reactivity is modulated by HAS3. These data enhance our understanding of the role mechanical forces play on lung development. These data are a significance step toward understanding CPAP effects on developing airway. These data may impact clinical recognition of the ways that CPAP may contribute to wheezing disorders of former preterm infants.


Asunto(s)
Presión de las Vías Aéreas Positiva Contínua , Nacimiento Prematuro , Animales , Femenino , Humanos , Hialuronano Sintasas , Ácido Hialurónico , Recién Nacido , Recien Nacido Prematuro , Masculino , Ratones , ARN Interferente Pequeño
13.
Am J Respir Cell Mol Biol ; 65(1): 70-80, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33780653

RESUMEN

Bronchopulmonary dysplasia (BPD) is characterized by alveolar simplification, airway hyperreactivity, and pulmonary hypertension. In our BPD model, we have investigated the metabolism of the bronchodilator and pulmonary vasodilator GSNO (S-nitrosoglutathione). We have shown the GSNO catabolic enzyme encoded by adh5 (alcohol dehydrogenase-5), GSNO reductase, is epigenetically upregulated in hyperoxia. Here, we investigated the distribution of GSNO reductase expression in human BPD and created an animal model that recapitulates the human data. Blinded comparisons of GSNO reductase protein expression were performed in human lung tissues from infants and children with and without BPD. BPD phenotypes were evaluated in global (adh5-/-) and conditional smooth muscle (smooth muscle/adh5-/-) adh5 knockout mice. GSNO reductase was prominently expressed in the airways and vessels of human BPD subjects. Compared with controls, expression was greater in BPD smooth muscle, particularly in vascular smooth muscle (2.4-fold; P = 0.003). The BPD mouse model of neonatal hyperoxia caused significant alveolar simplification, airway hyperreactivity, and right ventricular and vessel hypertrophy. Global adh5-/- mice were protected from all three aspects of BPD, whereas smooth muscle/adh5-/- mice were only protected from pulmonary hypertensive changes. These data suggest adh5 is required for the development of BPD. Expression in the pulmonary vasculature is relevant to the pathophysiology of BPD-associated pulmonary hypertension. GSNO-mimetic agents or GSNO reductase inhibitors, both of which are currently in clinical trials for other conditions, could be considered for further study in BPD.


Asunto(s)
Alcohol Deshidrogenasa/metabolismo , Displasia Broncopulmonar/metabolismo , Hipertensión Pulmonar/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Alcohol Deshidrogenasa/genética , Animales , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/patología , Niño , Preescolar , Femenino , Humanos , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/patología , Lactante , Masculino , Ratones , Ratones Noqueados , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología
14.
PLoS Pathog ; 15(9): e1008041, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31553770

RESUMEN

Filariae are parasitic nematodes that are transmitted to their definitive host as third-stage larvae by arthropod vectors like mosquitoes. Filariae cause diseases including: lymphatic filariasis with distressing and disturbing symptoms like elephantiasis; and river blindness. Filarial diseases affect millions of people in 73 countries throughout the topics and sub-tropics. The drugs available for mass drug administration, (ivermectin, albendazole and diethylcarbamazine), are ineffective against adult filariae (macrofilariae) at the registered dosing regimen; this generates a real and urgent need to identify effective macrofilaricides. Emodepside, a veterinary anthelmintic registered for treatment of nematode infections in cats and dogs, is reported to have macrofilaricidal effects. Here, we explore the mode of action of emodepside using adult Brugia malayi, one of the species that causes lymphatic filariasis. Whole-parasite motility measurement with Worminator and patch-clamp of single muscle cells show that emodepside potently inhibits motility by activating voltage-gated potassium channels and that the male is more sensitive than the female. RNAi knock down suggests that emodepside targets SLO-1 K channels. We expressed slo-1 isoforms, with alternatively spliced exons at the RCK1 (Regulator of Conductance of Potassium) domain, heterologously in Xenopus laevis oocytes. We discovered that the slo-1f isoform, found in muscles of males, is more sensitive to emodepside than the slo-1a isoform found in muscles of females; and selective RNAi of the slo-1a isoform in female worms increased emodepside potency. In Onchocerca volvulus, that causes river blindness, we found two isoforms in adult females with homology to Bma-SLO-1A and Bma-SLO-1F at the RCK1 domain. In silico modeling identified an emodepside binding pocket in the same RCK1 region of different species of filaria that is affected by these splice variations. Our observations show that emodepside has potent macrofilaricidal effects and alternative splicing in the RCK1 binding pocket affects potency. Therefore, the evaluation of potential sex-dependent effects of an anthelmintic compound is of importance to prevent any under-dosing of one or the other gender of nematodes once given to patients.


Asunto(s)
Brugia Malayi/efectos de los fármacos , Brugia Malayi/fisiología , Depsipéptidos/farmacología , Filaricidas/farmacología , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Empalme Alternativo , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Brugia Malayi/genética , Femenino , Filariasis/tratamiento farmacológico , Filariasis/parasitología , Técnicas de Silenciamiento del Gen , Humanos , Canales de Potasio de Gran Conductancia Activados por el Calcio/química , Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Masculino , Modelos Moleculares , Movimiento/efectos de los fármacos , Movimiento/fisiología , Músculos/efectos de los fármacos , Músculos/fisiología , Péptidos/farmacología , Bloqueadores de los Canales de Potasio/farmacología , Homología de Secuencia de Aminoácido , Factores Sexuales
15.
Pediatr Res ; 90(1): 52-57, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33122799

RESUMEN

BACKGROUND: Oxygen and continuous positive airway pressure (CPAP) are primary modes of respiratory support for preterm infants. Animal models, however, have demonstrated adverse unintended effects of hyperoxia and CPAP on lung development. We investigate the effects of combined neonatal hyperoxia and CPAP exposure on airway function and morphology in mice. METHODS: Newborn mice were exposed to hyperoxia (40% O2) 24 h/day for 7 consecutive days with or without daily (3 h/day) concomitant CPAP. Two weeks after CPAP and/or hyperoxia treatment ended, lungs were assessed for airway (AW) hyperreactivity and morphology. RESULTS: CPAP and hyperoxia exposure alone increased airway reactivity compared to untreated control mice. CPAP-induced airway hyperreactivity was associated with epithelial and smooth muscle proliferation. In contrast, combined CPAP and hyperoxia treatment no longer resulted in increased airway reactivity, which was associated with normalization of smooth muscle and epithelial proliferation to values similar to untreated mice. CONCLUSIONS: Our data suggest that the combination of CPAP and hyperoxia decreases the adverse consequences on airway remodeling of either intervention alone. The complex interaction between mechanical stretch (via CPAP) and hyperoxia exposure on development of immature airways has implications for the pathophysiology of airway disease in former preterm infants receiving non-invasive respiratory support. IMPACT: CPAP and mild hyperoxia exposure alone increase airway reactivity in the neonatal mouse model. In contrast, combined CPAP and hyperoxia no longer induce airway hyperreactivity. Combined CPAP and hyperoxia normalize smooth muscle and epithelial proliferation to control values. Interaction between CPAP-induced stretch and mild hyperoxia exposure on immature airways has important implications for airway pathophysiology in former preterm infants.


Asunto(s)
Presión de las Vías Aéreas Positiva Contínua , Hiperoxia/fisiopatología , Tráquea/fisiopatología , Animales , Animales Recién Nacidos , Femenino , Ratones , Ratones Endogámicos C57BL , Embarazo
16.
Doc Ophthalmol ; 143(2): 237-247, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33877487

RESUMEN

PURPOSE: To report the long-term structural and functional changes in the posterior segments of an adult with an unusual retinal dystrophy caused by a novel mutation in JAG1. METHODS: A 33-year-old female underwent comprehensive ophthalmic examination, including best corrected visual acuity (BCVA) measurement, dilated fundus imaging (wide-angle fundus colour and short wavelength autofluorescence imaging), macular and peripheral spectral-domain optical coherence tomography (SD-OCT) and electroretinography (ERG) at baseline and 10 years later at the age of 43. The patient also underwent systemic review with detailed cardiac, brain and renal investigations. During follow-up, genetic analysis using whole-exome sequencing was performed on the patient and her parents to identify disease-causing variants. RESULTS: The patient's main complaint was of a recent onset of bilateral photophobia and blurred vision in the left eye. On examination, the most striking retinal finding was of bilateral well-demarcated, anterior circumferential chorioretinal atrophy with scattered pigment clumping from the mid periphery to the ora. In addition, she had posterior pole RPE hypopigmentation, peripapillary chorioretinal atrophy, left macular choroidal folds and retinal vasculature tortuosity with atypical branching. Her retinal electrophysiology was consistent with a cone rod photoreceptor dystrophy and left macular dysfunction. Ten years later, her BCVA, the anterior circumferential chorioretinal atrophy and her visual field constriction all remained stable. Her retinal electrophysiology demonstrated deterioration of left rod function, while cone dysfunction remained stable. Macular function deteriorated in both eyes. During follow-up, she was also noted to have progressive aortic root dilatation, posterior embryotoxon and an x ray diagnosis of butterfly vertebrae. Whole-exome sequencing revealed a novel c.2412C > A p.(Tyr804Ter) truncating mutation in JAG1 that was predicted to be pathogenic and suggested a diagnosis of Alagille syndrome. CONCLUSION: This is the first report of the long-term detailed follow-up of a patient with Alagille syndrome whose most striking ophthalmic finding was bilateral well-demarcated, anterior circumferential chorioretinal atrophy. During follow-up, this finding remained stable, suggesting that this may be developmental in origin. This is in contrast with the progressive deterioration in the posterior pole retinal and macular function.


Asunto(s)
Electrorretinografía , Distrofias Retinianas , Adulto , Femenino , Angiografía con Fluoresceína , Estudios de Seguimiento , Humanos , Proteína Jagged-1 , Retina , Tomografía de Coherencia Óptica
17.
J Allergy Clin Immunol ; 146(2): 390-405, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32032632

RESUMEN

BACKGROUND: Human type 2 innate lymphoid cells (ILC2s) are identified by coupled detection of CRTH2 and IL7Rα on lineage negative (Lin-) cells. Type 2 cytokine production by CRTH2-IL7Rα- innate lymphoid cells (ILCs) is unknown. OBJECTIVE: We sought to identify CRTH2-IL7Rα- type 2 cytokine-producing ILCs and their disease relevance. METHODS: We studied human blood and lung ILCs from asthmatic and control subjects by flow cytometry, ELISA, RNA sequencing, quantitative PCR, adoptive transfer to mice, and measurement of airway hyperreactivity by Flexivent. RESULTS: We found that IL-5 and IL-13 were expressed not only by CRTH2+ but also by CRTH2-IL7Rα+ and CRTH2-IL7Rα- (double-negative [DN]) human blood and lung cells. All 3 ILC populations expressed type 2 genes and induced airway hyperreactivity when adoptively transferred to mice. The frequency of type 2 cytokine-positive IL7Rα and DN ILCs were similar to that of CRTH2 ILCs in the blood and lung. Their frequency was higher in asthmatic patients than in disease controls. Transcriptomic analysis of CRTH2, IL7Rα, and DN ILCs confirmed the expression of mRNA for type 2 transcription factors in all 3 populations. Unexpectedly, the mRNA for GATA3 and IL-5 correlated better with mRNA for CD30, TNFR2, ICOS, CCR4, and CD200R1 than for CRTH2. By using a combination of these surface markers, especially CD30/TNFR2, we identified a previously unrecognized ILC2 population. CONCLUSIONS: The commonly used surface markers for human ILC2s leave a majority of type 2 cytokine-producing ILC2s unaccounted for. We identified top GATA3-correlated cell surface-expressed genes in human ILCs by RNA sequencing. These new surface markers, such as CD30 and TNFR2, identified a previously unrecognized human ILC2 population. This ILC2 population is likely to contribute to asthma.


Asunto(s)
Asma/inmunología , Biomarcadores/metabolismo , Subunidad alfa del Receptor de Interleucina-7/metabolismo , Linfocitos/inmunología , Receptores Inmunológicos/metabolismo , Receptores de Prostaglandina/metabolismo , Diferenciación Celular , Células Cultivadas , Citocinas/metabolismo , Factor de Transcripción GATA3/genética , Factor de Transcripción GATA3/metabolismo , Humanos , Inmunidad Innata , Receptores del Factor de Necrosis Tumoral/metabolismo , Células Th2/inmunología
18.
J Allergy Clin Immunol ; 146(5): 1016-1026, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32298699

RESUMEN

BACKGROUND: Whether microbiome characteristics of induced sputum or oral samples demonstrate unique relationships to features of atopy or mild asthma in adults is unknown. OBJECTIVE: We sought to determine sputum and oral microbiota relationships to clinical or immunologic features in mild atopic asthma and the impact on the microbiota of inhaled corticosteroid (ICS) treatment administered to ICS-naive subjects with asthma. METHODS: Bacterial microbiota profiles were analyzed in induced sputum and oral wash samples from 32 subjects with mild atopic asthma before and after inhaled fluticasone treatment, 18 atopic subjects without asthma, and 16 nonatopic healthy subjects in a multicenter study (NCT01537133). Associations with clinical and immunologic features were examined, including markers of atopy, type 2 inflammation, immune cell populations, and cytokines. RESULTS: Sputum bacterial burden inversely associated with bronchial expression of type 2 (T2)-related genes. Differences in specific sputum microbiota also associated with T2-low asthma phenotype, a subgroup of whom displayed elevations in lung inflammatory mediators and reduced sputum bacterial diversity. Differences in specific oral microbiota were more reflective of atopic status. After ICS treatment of patients with asthma, the compositional structure of sputum microbiota showed greater deviation from baseline in ICS nonresponders than in ICS responders. CONCLUSIONS: Novel associations of sputum and oral microbiota to immunologic features were observed in this cohort of subjects with or without ICS-naive mild asthma. These findings confirm and extend our previous report of reduced bronchial bacterial burden and compositional complexity in subjects with T2-high asthma, with additional identification of a T2-low subgroup with a distinct microbiota-immunologic relationship.


Asunto(s)
Corticoesteroides/uso terapéutico , Asma/microbiología , Hipersensibilidad Inmediata/microbiología , Microbiota/genética , Boca/microbiología , Esputo/microbiología , Células Th2/inmunología , Administración por Inhalación , Adulto , Asma/tratamiento farmacológico , Biomarcadores , Citocinas/metabolismo , Femenino , Humanos , Hipersensibilidad Inmediata/tratamiento farmacológico , Masculino , Resultado del Tratamiento
19.
Thorax ; 75(9): 717-724, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32499407

RESUMEN

INTRODUCTION: Parkin (Park2), an E3 ubiquitin ligase, is critical to maintain mitochondrial function by regulating mitochondrial biogenesis and degradation (mitophagy), but recent evidence suggests the involvement of Parkin in promoting inflammation. In the present study, we determined if Parkin regulates airway mitochondrial DNA (mtDNA) release and inflammatory responses to type 2 cytokine interleukin (IL)-13 and allergens. METHODS: We measured Parkin mRNA expression in brushed bronchial epithelial cells and mtDNA release in the paired bronchoalveolar lavage fluid (BALF) from normal subjects and asthmatics. Parkin-deficient primary human tracheobronchial epithelial (HTBE) cells generated using the CRISPR-Cas9 system were stimulated with IL-13. To determine the in vivo function of Parkin, Parkin knockout (PKO) and wild-type (WT) mice were treated with IL-13 or allergen (house dust mite, HDM) in the presence or absence of mtDNA isolated from normal mouse lungs. RESULTS: Parkin mRNA expression in asthmatic airway epithelium was upregulated, which positively correlated with the levels of released mtDNA in BALF. IL-13-stimulated HTBE cells increased Parkin expression. Moreover, IL-13 induced mtDNA release in Parkin-sufficient, but not in Parkin-deficient HTBE cells. PKO (vs WT) mice attenuated airway mtDNA release and inflammation following IL-13 or HDM treatments. mtDNA amplified airway inflammation in mice treated with IL-13 or HDM. Notably, Parkin also mediated mtDNA-induced exacerbation of airway inflammation. CONCLUSION: Our research findings suggest that Parkin promotes mtDNA release and inflammation in airways, thus improving our understanding of the complex role of Parkin and mitochondrial dysfunction in asthma pathogenesis.


Asunto(s)
Asma/metabolismo , ADN Mitocondrial/metabolismo , Inflamación/metabolismo , ARN Mensajero/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Adulto , Alérgenos/farmacología , Animales , Líquido del Lavado Bronquioalveolar , Estudios de Casos y Controles , Células Cultivadas , Eosinófilos , Células Epiteliales/metabolismo , Femenino , Humanos , Inflamación/inducido químicamente , Inflamación/patología , Interleucina-13/farmacología , Recuento de Leucocitos , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Neutrófilos , Cultivo Primario de Células , Mucosa Respiratoria/metabolismo , Ubiquitina-Proteína Ligasas/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Adulto Joven
20.
J Pediatr ; 222: 65-70, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32423683

RESUMEN

OBJECTIVES: To compare the number of intermittent hypoxia events before and after packed red blood cell (pRBC) and non-pRBC transfusions in very low birth weight infants, and to compare the time spent with saturations of ≤85% before and after transfusions in the same population. STUDY DESIGN: This prospective observational study was conducted from April 2014 to August 2017. It included 92 transfusions (81 pRBC, 11 non-pRBC) from 41 very low birth weight infants between 230/7 and 286/7 weeks of gestation. The primary outcome was number of intermittent hypoxia events. Secondary outcomes included the percent time of Peripheral capillary oxygen saturation (SpO2)of ≤85%, ≤80%, and ≤75%. A mixed ANOVA model was used to examine the relationship between event rate and covariates. RESULTS: The mean number of intermittent hypoxia events per hour decreased from 5.27 ± 5.02 events per hour before pRBC transfusion to 3.61 ± 3.17 per hour after pRBC transfusions (P < .01) and intermittent hypoxia did not change after non-RBC transfusions (before, 4.45 ± 3.19 vs after, 4.47 ± 2.78; P = NS). The percent time with saturations of ≤80% and ≤75% significantly decreased after pRBC transfusions (P = .01). The time with saturations of ≤85% did not significantly change after non-pRBC transfusion. CONCLUSIONS: In very low birth weight infants with a hematocrit of 20%-42%, pRBC transfusions are associated with decreased frequency of intermittent hypoxia. No such diminution of intermittent hypoxia events was observed in infants who had received a non-pRBC transfusion. This finding suggests that the observed beneficial effects of RBC transfusions on apnea and its clinical manifestations of intermittent hypoxia are mediated through an enhanced oxygen carrying capacity.


Asunto(s)
Transfusión de Eritrocitos , Hipoxia/prevención & control , Femenino , Humanos , Recién Nacido , Recién Nacido de muy Bajo Peso , Masculino , Estudios Prospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA