RESUMEN
Cellular trafficking is essential to maintain critical biological functions. Mutations in 346 genes, most of them described in the last 5 years, are associated with disorders of cellular trafficking. Whereas initially restricted to membrane trafficking, the recent detection of many diseases has contributed to the discovery of new biological pathways. Accordingly, we propose to redesign this rapidly growing group of diseases combining biological mechanisms and clinical presentation into the following categories: (i) membrane trafficking (including organelle-related); (ii) membrane contact sites; (iii) autophagy; (iv) cytoskeleton-related. We present the most recently described pathophysiological findings, disorders and phenotypes. Although all tissues and organs are affected, the nervous system is especially vulnerable.
Asunto(s)
Autofagia , Orgánulos , Autofagia/genética , Citoesqueleto/genéticaRESUMEN
Leucine zipper-EF-hand containing transmembrane protein 1 (LETM1) encodes an inner mitochondrial membrane protein with an osmoregulatory function controlling mitochondrial volume and ion homeostasis. The putative association of LETM1 with a human disease was initially suggested in Wolf-Hirschhorn syndrome, a disorder that results from de novo monoallelic deletion of chromosome 4p16.3, a region encompassing LETM1. Utilizing exome sequencing and international gene-matching efforts, we have identified 18 affected individuals from 11 unrelated families harboring ultra-rare bi-allelic missense and loss-of-function LETM1 variants and clinical presentations highly suggestive of mitochondrial disease. These manifested as a spectrum of predominantly infantile-onset (14/18, 78%) and variably progressive neurological, metabolic, and dysmorphic symptoms, plus multiple organ dysfunction associated with neurodegeneration. The common features included respiratory chain complex deficiencies (100%), global developmental delay (94%), optic atrophy (83%), sensorineural hearing loss (78%), and cerebellar ataxia (78%) followed by epilepsy (67%), spasticity (53%), and myopathy (50%). Other features included bilateral cataracts (42%), cardiomyopathy (36%), and diabetes (27%). To better understand the pathogenic mechanism of the identified LETM1 variants, we performed biochemical and morphological studies on mitochondrial K+/H+ exchange activity, proteins, and shape in proband-derived fibroblasts and muscles and in Saccharomyces cerevisiae, which is an important model organism for mitochondrial osmotic regulation. Our results demonstrate that bi-allelic LETM1 variants are associated with defective mitochondrial K+ efflux, swollen mitochondrial matrix structures, and loss of important mitochondrial oxidative phosphorylation protein components, thus highlighting the implication of perturbed mitochondrial osmoregulation caused by LETM1 variants in neurological and mitochondrial pathologies.
Asunto(s)
Proteínas de Unión al Calcio , Enfermedades Mitocondriales , Proteínas de Unión al Calcio/genética , Homeostasis/genética , Humanos , Proteínas de la Membrana/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Sistema Nervioso/metabolismo , Saccharomyces cerevisiae/metabolismoRESUMEN
Macroautophagy is a highly conserved cellular pathway for the degradation and recycling of defective cargo including proteins, organelles, and macromolecular complexes. As autophagy is particularly relevant for cellular homeostasis in post-mitotic tissues, congenital disorders of autophagy, due to monogenic defects in key autophagy genes, share a common "clinical signature" including neurodevelopmental, neurodegenerative, and neuromuscular features, as well as variable abnormalities of the eyes, skin, heart, bones, immune cells, and other organ systems, depending on the expression pattern and the specific function of the defective proteins. Since the clinical and genetic resolution of EPG5-related Vici syndrome, the paradigmatic congenital disorder of autophagy, the widespread use of massively parallel sequencing has resulted in the identification of a growing number of autophagy-associated disease genes, encoding members of the core autophagy machinery as well as related proteins. Recently identified monogenic disorders linking selective autophagy, vesicular trafficking, and other pathways have further expanded the molecular and phenotypical spectrum of congenital disorders of autophagy as a clinical disease spectrum. Moreover, significant advances in basic research have enhanced the understanding of the underlying pathophysiology as a basis for therapy development. Here, we review (i) autophagy in the context of other intracellular trafficking pathways; (ii) the main congenital disorders of autophagy and their typical clinico-pathological signatures; and (iii) the recommended primary health surveillance in monogenic disorders of autophagy based on available evidence. We further discuss recently identified molecular mechanisms that inform the current understanding of autophagy in health and disease, as well as perspectives on future therapeutic approaches.
RESUMEN
Cobalamin C (Cbl-C) defect causes methylmalonic acidemia, homocystinuria, intellectual disability and visual impairment, despite treatment adherence. While international guidelines recommend parenteral hydroxocobalamin (OH-Cbl) as effective treatment, dose adjustments remain unclear. We assessed OH-Cbl therapy impact on biochemical, neurocognitive and visual outcomes in early-onset Cbl-C patients treated with different OH-Cbl doses over 3 years. Group A (n = 5), diagnosed via newborn screening (NBS), received high-dose OH-Cbl (median 0.55 mg/kg/day); Group B1 (n = 3), NBS-diagnosed, received low-dose OH-Cbl (median 0.09 mg/kg/day); Group B2 (n = 12), diagnosed on clinical bases, received low-dose OH-Cbl (median 0.06 mg/kg/day). Biochemical analyses revealed better values of homocysteine, methionine and methylmalonic acid in Group A compared to Group B1 (p < 0.01, p < 0.05 and p < 0.01, respectively) and B2 (p < 0.001, p < 0.01 and p < 0.001, respectively). Neurodevelopmental assessment showed better outcome in Group A compared to low-dose treated Groups B1 and B2, especially in Developmental Quotient, Hearing and Speech and Performance subscales without significant differences between Group B2 and Group B1. Maculopathy was detected in 100%, 66% and 83% of patients in the three groups, respectively. This study showed that "high-dose" OH-Cbl treatment in NBS-diagnosed children with severe early-onset Cbl-C defect led to a significant improvement in the metabolic profile and in neurocognitive outcome, compared to age-matched patients treated with a "low-dose" regimen. Effects on maculopathy seem unaffected by OH-Cbl dosage. Our findings, although observed in a limited number of patients, may contribute to improve the long-term outcome of Cbl-C patients.
RESUMEN
Dysfunction of the endolysosomal system is often associated with neurodegenerative disease because postmitotic neurons are particularly reliant on the elimination of intracellular aggregates. Adequate function of endosomes and lysosomes requires finely tuned luminal ion homeostasis and transmembrane ion fluxes. Endolysosomal CLC Cl-/H+ exchangers function as electric shunts for proton pumping and in luminal Cl- accumulation. We now report three unrelated children with severe neurodegenerative disease, who carry the same de novo c.1658A>G (p.Tyr553Cys) mutation in CLCN6, encoding the late endosomal Cl-/H+-exchanger ClC-6. Whereas Clcn6-/- mice have only mild neuronal lysosomal storage abnormalities, the affected individuals displayed severe developmental delay with pronounced generalized hypotonia, respiratory insufficiency, and variable neurodegeneration and diffusion restriction in cerebral peduncles, midbrain, and/or brainstem in MRI scans. The p.Tyr553Cys amino acid substitution strongly slowed ClC-6 gating and increased current amplitudes, particularly at the acidic pH of late endosomes. Transfection of ClC-6Tyr553Cys, but not ClC-6WT, generated giant LAMP1-positive vacuoles that were poorly acidified. Their generation strictly required ClC-6 ion transport, as shown by transport-deficient double mutants, and depended on Cl-/H+ exchange, as revealed by combination with the uncoupling p.Glu200Ala substitution. Transfection of either ClC-6Tyr553Cys/Glu200Ala or ClC-6Glu200Ala generated slightly enlarged vesicles, suggesting that p.Glu200Ala, previously associated with infantile spasms and microcephaly, is also pathogenic. Bafilomycin treatment abrogated vacuole generation, indicating that H+-driven Cl- accumulation osmotically drives vesicle enlargement. Our work establishes mutations in CLCN6 associated with neurological diseases, whose spectrum of clinical features depends on the differential impact of the allele on ClC-6 function.
Asunto(s)
Canales de Cloruro/genética , Mutación con Ganancia de Función , Enfermedades Neurodegenerativas/genética , Alelos , Animales , Células CHO , Niño , Cricetulus , Electrofisiología , Endosomas/metabolismo , Femenino , Células HeLa , Heterocigoto , Homeostasis , Humanos , Concentración de Iones de Hidrógeno , Lactante , Transporte Iónico , Iones , Proteínas de Membrana de los Lisosomas/metabolismo , Lisosomas/metabolismo , Macrólidos/farmacología , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Noqueados , Microscopía por Video , TransfecciónRESUMEN
Organic acidurias (OAs), urea-cycle disorders (UCDs), and maple syrup urine disease (MSUD) belong to the category of intoxication-type inborn errors of metabolism (IT-IEM). Liver transplantation (LTx) is increasingly utilized in IT-IEM. However, its impact has been mainly focused on clinical outcome measures and rarely on health-related quality of life (HRQoL). Aim of the study was to investigate the impact of LTx on HrQoL in IT-IEMs. This single center prospective study involved 32 patients (15 OA, 11 UCD, 6 MSUD; median age at LTx 3.0 years, range 0.8-26.0). HRQoL was assessed pre/post transplantation by PedsQL-General Module 4.0 and by MetabQoL 1.0, a specifically designed tool for IT-IEM. PedsQL highlighted significant post-LTx improvements in total and physical functioning in both patients' and parents' scores. According to age at transplantation (≤3 vs. >3 years), younger patients showed higher post-LTx scores on Physical (p = 0.03), Social (p < 0.001), and Total (p =0.007) functioning. MetabQoL confirmed significant post-LTx changes in Total and Physical functioning in both patients and parents scores (p ≤ 0.009). Differently from PedsQL, MetabQoL Mental (patients p = 0.013, parents p = 0.03) and Social scores (patients p = 0.02, parents p = 0.012) were significantly higher post-LTx. Significant improvements (p = 0.001-0.04) were also detected both in self- and proxy-reports for almost all MetabQoL subscales. This study shows the importance of assessing the impact of transplantation on HrQoL, a meaningful outcome reflecting patients' wellbeing. LTx is associated with significant improvements of HrQol in both self- and parent-reports. The comparison between PedsQL-GM and MetabQoL highlighted that MetabQoL demonstrated higher sensitivity in the assessment of disease-specific domains than the generic PedsQL tool.
Asunto(s)
Trasplante de Hígado , Enfermedad de la Orina de Jarabe de Arce , Trastornos Innatos del Ciclo de la Urea , Humanos , Lactante , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Calidad de Vida , Estudios Prospectivos , Enfermedad de la Orina de Jarabe de Arce/cirugía , PadresRESUMEN
Liver and liver/kidney transplantation are increasingly used in methylmalonic aciduria, but little is known on their impact on CNS. The effect of transplantation on neurological outcome was prospectively assessed in six patients pre- and post-transplant by clinical evaluation and by measuring disease biomarkers in plasma and CSF, in combination with psychometric tests and brain MRI studies. Primary (methylmalonic- and methylcitric acid) and secondary biomarkers (glycine and glutamine) significantly improved in plasma, while they remained unchanged in CSF. Differently, biomarkers of mitochondrial dysfunction (lactate, alanine, and related ratios) significantly decreased in CSF. Neurocognitive evaluation documented significant higher post-transplant developmental/cognitive scores and maturation of executive functions corresponding to improvement of brain atrophy, cortical thickness, and white matter maturation indexes at MRI. Three patients presented post-transplantation reversible neurological events, which were differentiated, by means of biochemical and neuroradiological evaluations, into calcineurin inhibitor-induced neurotoxicity and metabolic stroke-like episode. Our study shows that transplantation has a beneficial impact on neurological outcome in methylmalonic aciduria. Early transplantation is recommended due to the high risk of long-term complications, high disease burden, and low quality of life.
Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Trasplante de Hígado , Humanos , Calidad de Vida , Biomarcadores , Ácido Láctico , Ácido MetilmalónicoRESUMEN
Methylmalonic Acidemia (MMA) is a heterogenous group of inborn errors of metabolism caused by a defect in the methylmalonyl-CoA mutase (MMUT) enzyme or the synthesis and transport of its cofactor, 5'-deoxy-adenosylcobalamin. It is characterized by life-threatening episodes of ketoacidosis, chronic kidney disease, and other multiorgan complications. Liver transplantation can improve patient stability and survival and thus provides clinical and biochemical benchmarks for the development of hepatocyte-targeted genomic therapies. Data are presented from a US natural history protocol that evaluated subjects with different types of MMA including mut-type (N = 91), cblB-type (15), and cblA-type MMA (17), as well as from an Italian cohort of mut-type (N = 19) and cblB-type MMA (N = 2) subjects, including data before and after organ transplantation in both cohorts. Canonical metabolic markers, such as serum methylmalonic acid and propionylcarnitine, are variable and affected by dietary intake and renal function. We have therefore explored the use of the 1-13 C-propionate oxidation breath test (POBT) to measure metabolic capacity and the changes in circulating proteins to assess mitochondrial dysfunction (fibroblast growth factor 21 [FGF21] and growth differentiation factor 15 [GDF15]) and kidney injury (lipocalin-2 [LCN2]). Biomarker concentrations are higher in patients with the severe mut0 -type and cblB-type MMA, correlate with a decreased POBT, and show a significant response postliver transplant. Additional circulating and imaging markers to assess disease burden are necessary to monitor disease progression. A combination of biomarkers reflecting disease severity and multisystem involvement will be needed to help stratify patients for clinical trials and assess the efficacy of new therapies for MMA.
Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos , Humanos , Mutación , Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Errores Innatos del Metabolismo de los Aminoácidos/terapia , Errores Innatos del Metabolismo de los Aminoácidos/complicaciones , Biomarcadores , Progresión de la Enfermedad , Ácido Metilmalónico , Metilmalonil-CoA Mutasa/genética , Metilmalonil-CoA Mutasa/metabolismoRESUMEN
BACKGROUND: Human coenzyme Q4 (COQ4) is essential for coenzyme Q10 (CoQ10) biosynthesis. Pathogenic variants in COQ4 cause childhood-onset neurodegeneration. We aimed to delineate the clinical spectrum and the cellular consequences of COQ4 deficiency. METHODS: Clinical course and neuroradiological findings in a large cohort of paediatric patients with COQ4 deficiency were analysed. Functional studies in patient-derived cell lines were performed. RESULTS: We characterised 44 individuals from 36 families with COQ4 deficiency (16 newly described). A total of 23 different variants were identified, including four novel variants in COQ4. Correlation analyses of clinical and neuroimaging findings revealed three disease patterns: type 1: early-onset phenotype with neonatal brain anomalies and epileptic encephalopathy; type 2: intermediate phenotype with distinct stroke-like lesions; and type 3: moderate phenotype with non-specific brain pathology and a stable disease course. The functional relevance of COQ4 variants was supported by in vitro studies using patient-derived fibroblast lines. Experiments revealed significantly decreased COQ4 protein levels, reduced levels of cellular CoQ10 and elevated levels of the metabolic intermediate 6-demethoxyubiquinone. CONCLUSION: Our study describes the heterogeneous clinical presentation of COQ4 deficiency and identifies phenotypic subtypes. Cell-based studies support the pathogenic characteristics of COQ4 variants. Due to the insufficient clinical response to oral CoQ10 supplementation, alternative treatment strategies are warranted.
Asunto(s)
Proteínas Mitocondriales , Ubiquinona , Línea Celular , Niño , Humanos , Recién Nacido , Proteínas Mitocondriales/genética , Neuroimagen , Fenotipo , Ubiquinona/genética , Ubiquinona/metabolismoRESUMEN
Glypicans are a family of cell-surface heparan sulfate proteoglycans that regulate growth-factor signaling during development and are thought to play a role in the regulation of morphogenesis. Whole-exome sequencing of the Australian family that defined Keipert syndrome (nasodigitoacoustic syndrome) identified a hemizygous truncating variant in the gene encoding glypican 4 (GPC4). This variant, located in the final exon of GPC4, results in premature termination of the protein 51 amino acid residues prior to the stop codon, and in concomitant loss of functionally important N-linked glycosylation (Asn514) and glycosylphosphatidylinositol (GPI) anchor (Ser529) sites. We subsequently identified seven affected males from five additional kindreds with novel and predicted pathogenic variants in GPC4. Segregation analysis and X-inactivation studies in carrier females provided supportive evidence that the GPC4 variants caused the condition. Furthermore, functional studies of recombinant protein suggested that the truncated proteins p.Gln506∗ and p.Glu496∗ were less stable than the wild type. Clinical features of Keipert syndrome included a prominent forehead, a flat midface, hypertelorism, a broad nose, downturned corners of mouth, and digital abnormalities, whereas cognitive impairment and deafness were variable features. Studies of Gpc4 knockout mice showed evidence of the two primary features of Keipert syndrome: craniofacial abnormalities and digital abnormalities. Phylogenetic analysis demonstrated that GPC4 is most closely related to GPC6, which is associated with a bone dysplasia that has a phenotypic overlap with Keipert syndrome. Overall, we have shown that pathogenic variants in GPC4 cause a loss of function that results in Keipert syndrome, making GPC4 the third human glypican to be linked to a genetic syndrome.
Asunto(s)
Sordera/congénito , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Variación Genética , Glipicanos/genética , Deformidades Congénitas de las Extremidades Inferiores/genética , Deformidades Congénitas de las Extremidades Inferiores/patología , Adulto , Niño , Preescolar , Sordera/genética , Sordera/patología , Femenino , Humanos , Lactante , Masculino , Linaje , Fenotipo , Adulto JovenRESUMEN
PURPOSE: TRAPPC9 deficiency is an autosomal recessive disorder mainly associated with intellectual disability (ID), microcephaly, and obesity. Previously, TRAPPC9 deficiency has not been associated with biochemical abnormalities. METHODS: Exome sequencing was performed in 3 individuals with ID and dysmorphic features. N-Glycosylation analyses were performed in the patients' blood samples to test for possible congenital disorder of glycosylation (CDG). TRAPPC9 gene, TRAPPC9 protein expression, and N-glycosylation markers were assessed in patient fibroblasts. Complementation with wild-type TRAPPC9 and immunofluorescence studies to assess TRAPPC9 expression and localization were performed. The metabolic consequences of TRAPPC9 deficiency were evaluated using tracer metabolomics. RESULTS: All 3 patients carried biallelic missense variants in TRAPPC9 and presented with an N-glycosylation defect in blood, consistent with CDG type I. Extensive investigations in patient fibroblasts corroborated TRAPPC9 deficiency and an N-glycosylation defect. Tracer metabolomics revealed global metabolic changes with several affected glycosylation-related metabolites. CONCLUSION: We identified 3 TRAPPC9 deficient patients presenting with ID, dysmorphic features, and abnormal glycosylation. On the basis of our findings, we propose that TRAPPC9 deficiency could lead to a CDG (TRAPPC9-CDG). The finding of abnormal glycosylation in these patients is highly relevant for diagnosis, further elucidation of the pathophysiology, and management of the disease.
Asunto(s)
Trastornos Congénitos de Glicosilación , Discapacidad Intelectual , Microcefalia , Trastornos Congénitos de Glicosilación/genética , Glicosilación , Humanos , Discapacidad Intelectual/complicaciones , Discapacidad Intelectual/genética , Microcefalia/genética , Mutación MissenseRESUMEN
Congenital disorders of glycosylation type 1 (CDG-I) comprise a group of 27 genetic defects with heterogeneous multisystem phenotype, mostly presenting with nonspecific neurological symptoms. The biochemical hallmark of CDG-I is a partial absence of complete N-glycans on transferrin. However, recent findings of a diagnostic N-tetrasaccharide for ALG1-CDG and increased high-mannose N-glycans for a few other CDG suggested the potential of glycan structural analysis for CDG-I gene discovery. We analyzed the relative abundance of total plasma N-glycans by high resolution quadrupole time-of-flight mass spectrometry in a large cohort of 111 CDG-I patients with known (n = 75) or unsolved (n = 36) genetic cause. We designed single-molecule molecular inversion probes (smMIPs) for sequencing of CDG-I candidate genes on the basis of specific N-glycan signatures. Glycomics profiling in patients with known defects revealed novel features such as the N-tetrasaccharide in ALG2-CDG patients and a novel fucosylated N-pentasaccharide as specific glycomarker for ALG1-CDG. Moreover, group-specific high-mannose N-glycan signatures were found in ALG3-, ALG9-, ALG11-, ALG12-, RFT1-, SRD5A3-, DOLK-, DPM1-, DPM3-, MPDU1-, ALG13-CDG, and hereditary fructose intolerance. Further differential analysis revealed high-mannose profiles, characteristic for ALG12- and ALG9-CDG. Prediction of candidate genes by glycomics profiling in 36 patients with thus far unsolved CDG-I and subsequent smMIPs sequencing led to a yield of solved cases of 78% (28/36). Combined plasma glycomics profiling and targeted smMIPs sequencing of candidate genes is a powerful approach to identify causative mutations in CDG-I patient cohorts.
Asunto(s)
Trastornos Congénitos de Glicosilación , Trastornos Congénitos de Glicosilación/diagnóstico , Trastornos Congénitos de Glicosilación/genética , Glicómica , Glicosilación , Humanos , Manosa , Manosiltransferasas/genética , N-Acetilglucosaminiltransferasas , Oligosacáridos , Polisacáridos/genéticaRESUMEN
Isolated biochemical deficiency of mitochondrial complex I is the most frequent signature among mitochondrial diseases and is associated with a wide variety of clinical symptoms. Leigh syndrome represents the most frequent neuroradiological finding in patients with complex I defect and more than 80 monogenic causes have been involved in the disease. In this report, we describe seven patients from four unrelated families harboring novel NDUFA12 variants, with six of them presenting with Leigh syndrome. Molecular genetic characterization was performed using next-generation sequencing combined with the Sanger method. Biochemical and protein studies were achieved by enzymatic activities, blue native gel electrophoresis, and western blot analysis. All patients displayed novel homozygous mutations in the NDUFA12 gene, leading to the virtual absence of the corresponding protein. Surprisingly, despite the fact that in none of the analyzed patients, NDUFA12 protein was detected, they present a different onset and clinical course of the disease. Our report expands the array of genetic alterations in NDUFA12 and underlines phenotype variability associated with NDUFA12 defect.
Asunto(s)
Enfermedad de Leigh/genética , Enfermedades Mitocondriales/genética , NADPH Deshidrogenasa/genética , Adolescente , Niño , Preescolar , Estudios de Cohortes , Consanguinidad , Complejo I de Transporte de Electrón/genética , Familia , Femenino , Predisposición Genética a la Enfermedad , Humanos , Italia , Enfermedad de Leigh/complicaciones , Enfermedad de Leigh/patología , Masculino , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/patología , Fenotipo , Polimorfismo de Nucleótido SimpleRESUMEN
Cutaneous signs and symptoms may facilitate the diagnosis or can help in identifying complications or side effects of overtreatment of inherited metabolic diseases. The principal manifestations can be grouped into vascular lesions, ichthyosis, papular and nodular skin lesions, abnormal pigmentation, photosensitivity, skin laxity, hair shaft involvement, and nail abnormalities. We have summarized associations of these cutaneous signs and symptoms in 252 inherited metabolic diseases. This represents the sixth of a series of articles attempting to create and maintain a comprehensive list of clinical and metabolic differential diagnoses according to system involvement.
Asunto(s)
Enfermedades Metabólicas/fisiopatología , Errores Innatos del Metabolismo/fisiopatología , Enfermedades de la Piel/fisiopatología , Piel/patología , Diagnóstico Diferencial , Humanos , Ictiosis/diagnóstico , Ictiosis/fisiopatología , Errores Innatos del Metabolismo/diagnóstico , SobretratamientoRESUMEN
We aimed to identify clinical, molecular and radiological correlates of activities of daily living (ADL) in patients with cerebellar atrophy caused by PMM2 mutations (PMM2-CDG), the most frequent congenital disorder of glycosylation. Twenty-six PMM2-CDG patients (12 males; mean age 13 ± 11.1 years) underwent a standardized assessment to measure ADL, ataxia (brief ataxia rating scale, BARS) and phenotype severity (Nijmegen CDG rating scale, NCRS). MRI biometry of the cerebellum and the brainstem were performed in 23 patients (11 males; aged 5 months-18 years) and 19 control subjects with equal gender and age distributions. The average total ADL score was 15.3 ± 8.5 (range 3-32 out of 36 indicating severe functional disability), representing variable functional outcome in PMM2-CDG patients. Total ADL scores were significantly correlated with NCRS (r2 = 0.55, p < 0.001) and BARS scores (r2 = 0.764; p < 0.001). Severe intellectual disability, peripheral neuropathy, and severe PMM2 variants were all significantly associated with worse functional outcome. Higher ADL scores were significantly associated with decreased diameters of cerebellar vermis (r2 = 0.347; p = 0.004), hemispheres (r2 = 0.436; p = 0.005), and brainstem, particularly the mid-pons (r2 = 0.64; p < 0.001) representing the major radiological predictor of functional disability score in multivariate regression analysis. We show that cerebellar syndrome severity, cognitive level, peripheral neuropathy, and genotype correlate with ADL used to quantify disease-related deficits in PMM2-CDG. Brainstem involvement should be regarded among functional outcome predictors in patients with cerebellar atrophy caused by PMM2-CDG.
Asunto(s)
Actividades Cotidianas , Enfermedades Cerebelosas , Mutación , Fosfotransferasas (Fosfomutasas) , Atrofia , Trastornos Congénitos de Glicosilación , Humanos , Masculino , Fosfotransferasas (Fosfomutasas)/deficiencia , Fosfotransferasas (Fosfomutasas)/genéticaRESUMEN
BACKGROUND: This study provides a general overview on liver and/or kidney transplantation in patients with an amino and organic acid-related disorder (AOA) with the aim to investigate patient characteristics and global outcome in Europe. This study was an initiative of the E-IMD and the AOA subnetwork of MetabERN. METHODS: A questionnaire was sent to all clinically active European Society for the Study of Inborn Errors of Metabolism (SSIEM) members. The questionnaire focused on transplanted individuals with methylmalonic acidemia (MMA), propionic acidemia (PA), maple syrup urine disease (MSUD), and urea-cycle disorders (UCDs). RESULTS: We identified 280 transplanted AOA patients (liver transplantation in 20 MMA, 37 PA, 47 MSUD, and 111 UCD patients, kidney or combined liver and kidney transplantation in 57 MMA patients and undefined transplantation type in 8 MMA patients), followed by 51 metabolic centers. At a median follow-up of 3.5 years, posttransplant survival ranged between 78% and 100%, being the lowest in PA patients. Overall, the risk of mortality was highest within 14 days posttransplantation. Neurological complications were mainly reported in Mut0 type MMA (n = 8). Nonneurological complications occurred in MMA (n = 28), PA (n = 7), and UCD (n = 14) patients, while it was virtually absent in MSUD patients. Only 116/280 patients were psychologically tested. In all, except MSUD patients, the intelligence quotient (IQ) remained unchanged in the majority (76/94, 81%). Forty-one percentage (9/22) of MSUD patient showed improved IQ. CONCLUSION: The survival in AOA individuals receiving liver and/or kidney transplantation seems satisfactory. Evidence-based guidelines, systematic data collection, and improved cooperation between transplantation centers and European Reference Networks are indispensable to improve patient care and outcomes.
Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/terapia , Trasplante de Riñón , Trasplante de Hígado , Enfermedad de la Orina de Jarabe de Arce/terapia , Acidemia Propiónica/terapia , Trastornos Innatos del Ciclo de la Urea/terapia , Adolescente , Adulto , Errores Innatos del Metabolismo de los Aminoácidos/mortalidad , Niño , Preescolar , Europa (Continente)/epidemiología , Femenino , Humanos , Lactante , Masculino , Enfermedad de la Orina de Jarabe de Arce/mortalidad , Acidemia Propiónica/mortalidad , Tasa de Supervivencia , Trastornos Innatos del Ciclo de la Urea/mortalidad , Adulto JovenRESUMEN
Patients with inborn errors of metabolism causing fasting intolerance can experience acute metabolic decompensations. Long-term data on outcomes using emergency letters are lacking. This is a retrospective, observational, single-center study of the use of emergency letters based on a generic emergency protocol in patients with hepatic glycogen storage diseases (GSD) or fatty acid oxidation disorders (FAOD). Data on hospital admissions, initial laboratory results, and serious adverse events were collected. Subsequently, the website www.emergencyprotocol.net was generated in the context of the CONNECT MetabERN eHealth project following multiple meetings, protocol revisions, and translations. Representing 470 emergency protocol years, 127 hospital admissions were documented in 54/128 (42%) patients who made use of emergency letters generated based on the generic emergency protocol. Hypoglycemia (here defined as glucose concentration < 3.9 mmol/L) was reported in only 15% of hospital admissions and was uncommon in patients with ketotic GSD and patients with FAOD aged >5 years. Convulsions, coma, or death was not documented. By providing basic information, emergency letters for individual patients with hepatic GSD or the main FAOD can be generated at www.emergencyprotocol.net, in nine different languages. Generic emergency protocols are safe and easy for home management by the caregivers and the first hour in-hospital management to prevent metabolic emergencies in patients with hepatic GSD and medium-chain Acyl CoA dehydrogenase deficiency. The website www.emergencyprotocol.net is designed to support families and healthcare providers to generate personalized emergency letters for patients with hepatic GSD and the main FAOD.
Asunto(s)
Tratamiento de Urgencia/métodos , Enfermedad del Almacenamiento de Glucógeno Tipo I/metabolismo , Hipoglucemia/terapia , Errores Innatos del Metabolismo Lipídico/metabolismo , Telemedicina , Adolescente , Adulto , Niño , Preescolar , Ayuno , Ácidos Grasos/metabolismo , Femenino , Enfermedad del Almacenamiento de Glucógeno Tipo I/fisiopatología , Humanos , Hipoglucemia/etiología , Lactante , Recién Nacido , Errores Innatos del Metabolismo Lipídico/fisiopatología , Masculino , Persona de Mediana Edad , Oxidación-Reducción , Estudios Retrospectivos , Adulto JovenRESUMEN
Isolated methylmalonic acidaemia (MMA) and propionic acidaemia (PA) are rare inherited metabolic diseases. Six years ago, a detailed evaluation of the available evidence on diagnosis and management of these disorders has been published for the first time. The article received considerable attention, illustrating the importance of an expert panel to evaluate and compile recommendations to guide rare disease patient care. Since that time, a growing body of evidence on transplant outcomes in MMA and PA patients and use of precursor free amino acid mixtures allows for updates of the guidelines. In this article, we aim to incorporate this newly published knowledge and provide a revised version of the guidelines. The analysis was performed by a panel of multidisciplinary health care experts, who followed an updated guideline development methodology (GRADE). Hence, the full body of evidence up until autumn 2019 was re-evaluated, analysed and graded. As a result, 21 updated recommendations were compiled in a more concise paper with a focus on the existing evidence to enable well-informed decisions in the context of MMA and PA patient care.
Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/diagnóstico , Errores Innatos del Metabolismo de los Aminoácidos/terapia , Acidemia Propiónica/diagnóstico , Acidemia Propiónica/terapia , Manejo de la Enfermedad , HumanosRESUMEN
Acute intoxication-type inborn errors of metabolism (IT-IEM) such as urea cycle disorders and non-acute IT-IEM such as phenylketonuria have a major impact on paediatric patients' life. Patients have to adhere to a strict diet but may face neurocognitive impairment and - in acute diseases - metabolic decompensations nevertheless. Research on the subjective burden of IT-IEM remains sparse. Studies with appropriate sample sizes are needed to make valid statements about health-related quality of life (HrQoL) in children and adolescents with IT-IEM. Six international metabolic centres contributed self-reports and proxy reports of HrQoL (assessed with the Paediatric Quality of Life Inventory) to the final data set (n = 251 patients; age range 2.3-18.8 years). To compare HrQoL of the patient sample with norm data and between acute and non-acute IT-IEM, t tests were conducted. To examine the influence of child age, sex, diagnosis and current dietary treatment on HrQoL, multiple linear regression analyses were conducted. Self-reports and proxy reporst showed significantly lower HrQoL total scores for children with IT-IEM compared to healthy children. Current dietary treatment significantly predicted lower proxy reported total HrQoL. Children with non-acute IT-IEM reported significantly lower psychosocial health and emotional functioning than children with acute IT-IEM. The patient sample showed significantly impaired HrQoL and a diet regimen remains a risk factor for lower HrQoL. Differences in HrQoL between acute and non-acute IT-IEM subgroups indicate that factors beyond symptom severity determine the perception of disease burden. Identifying these factors is of crucial importance to develop and implement appropriate interventions for those in need.
Asunto(s)
Adaptación Psicológica , Errores Innatos del Metabolismo/psicología , Calidad de Vida/psicología , Adolescente , Niño , Preescolar , Femenino , Humanos , Cooperación Internacional , Modelos Lineales , Masculino , Errores Innatos del Metabolismo/dietoterapia , Factores de RiesgoRESUMEN
The neurological phenotype of 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) and short-chain enoyl-CoA hydratase (SCEH) defects is expanding and natural history studies are necessary to improve clinical management. From 42 patients with Leigh syndrome studied by massive parallel sequencing, we identified five patients with SCEH and HIBCH deficiency. Fourteen additional patients were recruited through collaborations with other centres. In total, we analysed the neurological features and mutation spectrum in 19 new SCEH/HIBCH patients. For natural history studies and phenotype to genotype associations we also included 70 previously reported patients. The 19 newly identified cases presented with Leigh syndrome (SCEH, n = 11; HIBCH, n = 6) and paroxysmal dystonia (SCEH, n = 2). Basal ganglia lesions (18 patients) were associated with small cysts in the putamen/pallidum in half of the cases, a characteristic hallmark for diagnosis. Eighteen pathogenic variants were identified, 11 were novel. Among all 89 cases, we observed a longer survival in HIBCH compared to SCEH patients, and in HIBCH patients carrying homozygous mutations on the protein surface compared to those with variants inside/near the catalytic region. The SCEH p.(Ala173Val) change was associated with a milder form of paroxysmal dystonia triggered by increased energy demands. In a child harbouring SCEH p.(Ala173Val) and the novel p.(Leu123Phe) change, an 83.6% reduction of the protein was observed in fibroblasts. The SCEH and HIBCH defects in the catabolic valine pathway were a frequent cause of Leigh syndrome in our cohort. We identified phenotype and genotype associations that may help predict outcome and improve clinical management.