Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 63(6): e202317487, 2024 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-38100749

RESUMEN

Hydrogen sulfide (H2 S) is an endogenous gasotransmitter that plays important roles in redox signaling. H2 S overproduction has been linked to a variety of disease states and therefore, H2 S-depleting agents, such as scavengers, are needed to understand the significance of H2 S-based therapy. It is known that elevated H2 S can induce oxidative stress with elevated reactive oxygen species (ROS) formation, such as in H2 S acute intoxication. We explored the possibility of developing catalytic scavengers to simultaneously remove H2 S and ROS. Herein, we studied a series of selenium-based molecules as catalytic H2 S/H2 O2 scavengers. Inspired by the high reactivity of selenoxide compounds towards H2 S, 14 diselenide/monoselenide compounds were tested. Several promising candidates such as S6 were identified. Their activities in buffers, as well as in plasma- and cell lysate-containing solutions were evaluated. We also studied the reaction mechanism of this scavenging process. Finally, the combination of the diselenide catalyst and photosensitizers was used to achieve light-induced H2 S removal. These Se-based scavengers can be useful tools for understanding H2 S/ROS regulations.


Asunto(s)
Gasotransmisores , Sulfuro de Hidrógeno , Selenio , Especies Reactivas de Oxígeno , Estrés Oxidativo , Peróxido de Hidrógeno/farmacología
2.
J Clin Invest ; 134(15)2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38870029

RESUMEN

Leigh syndrome is the most common inherited mitochondrial disease in children and is often fatal within the first few years of life. In 2020, mutations in the gene encoding sulfide:quinone oxidoreductase (SQOR), a mitochondrial protein, were identified as a cause of Leigh syndrome. Here, we report that mice with a mutation in the gene encoding SQOR (SqorΔN/ΔN mice), which prevented SQOR from entering mitochondria, had clinical and pathological manifestations of Leigh syndrome. SqorΔN/ΔN mice had increased blood lactate levels that were associated with markedly decreased complex IV activity and increased hydrogen sulfide (H2S) levels. Because H2S is produced by both gut microbiota and host tissue, we tested whether metronidazole (a broad-spectrum antibiotic) or a sulfur-restricted diet rescues SqorΔN/ΔN mice from developing Leigh syndrome. Daily treatment with metronidazole alleviated increased H2S levels, normalized complex IV activity and blood lactate levels, and prolonged the survival of SqorΔN/ΔN mice. Similarly, a sulfur-restricted diet normalized blood lactate levels and inhibited the development of Leigh syndrome. Taken together, these observations suggest that mitochondrial SQOR is essential to prevent systemic accumulation of H2S. Metronidazole administration and a sulfur-restricted diet may be therapeutic approaches to treatment of patients with Leigh syndrome caused by mutations in SQOR.


Asunto(s)
Sulfuro de Hidrógeno , Enfermedad de Leigh , Mitocondrias , Quinona Reductasas , Animales , Enfermedad de Leigh/genética , Enfermedad de Leigh/metabolismo , Enfermedad de Leigh/patología , Enfermedad de Leigh/enzimología , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/enzimología , Quinona Reductasas/genética , Quinona Reductasas/metabolismo , Sulfuro de Hidrógeno/metabolismo , Metronidazol/farmacología , Mutación , Sulfuros/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA