Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(1): e2206850120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36577066

RESUMEN

Atomically dispersed catalysts have been shown highly active for preferential oxidation of carbon monoxide in the presence of excess hydrogen (PROX). However, their stability has been less than ideal. We show here that the introduction of a structural component to minimize diffusion of the active metal center can greatly improve the stability without compromising the activity. Using an Ir dinuclear heterogeneous catalyst (DHC) as a study platform, we identify two types of oxygen species, interfacial and bridge, that work in concert to enable both activity and stability. The work sheds important light on the synergistic effect between the active metal center and the supporting substrate and may find broad applications for the use of atomically dispersed catalysts.


Asunto(s)
Monóxido de Carbono , Hidrógeno , Monóxido de Carbono/química , Oxidación-Reducción , Catálisis , Hidrógeno/química , Platino (Metal)/química
2.
Chemistry ; 27(68): 16966-16977, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34137473

RESUMEN

Heterogenized photoredox catalysts provide a path for sustainable chemical synthesis using highly tunable, reusable constructs. Here, heterogenized iridium complexes as photoredox catalysts were assembled via covalent attachment to metal oxide surfaces (ITO, ZrO2 , Al2 O3 ) in thin film or nanopowder constructs. The goal was to understand which materials provided the most promising constructs for catalysis. To do this, reductive dehalogenation of bromoacetophenone to acetophenone was studied as a test reaction for system optimization. All catalyst constructs produced acetophenone with high conversions and yields with the fastest reactions complete in fifteen minutes using Al2 O3 supports. The nanopowder catalysts resulted in faster and more efficient catalysis, while the thin film catalysts were more robust and easily reused. Importantly, the thin film constructs show promise for future photoelectrochemical and electrochemical photoredox setups. Finally, all catalysts were reusable 2-3 times, performing at least 1000 turnovers (Al2 O3 ), demonstrating that heterogenized catalysts are a sustainable catalyst alternative.

3.
Proc Natl Acad Sci U S A ; 115(12): 2902-2907, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29507243

RESUMEN

Atomically dispersed catalysts refer to substrate-supported heterogeneous catalysts featuring one or a few active metal atoms that are separated from one another. They represent an important class of materials ranging from single-atom catalysts (SACs) and nanoparticles (NPs). While SACs and NPs have been extensively reported, catalysts featuring a few atoms with well-defined structures are poorly studied. The difficulty in synthesizing such structures has been a critical challenge. Here we report a facile photochemical method that produces catalytic centers consisting of two Ir metal cations, bridged by O and stably bound to a support. Direct evidence unambiguously supporting the dinuclear nature of the catalysts anchored on α-Fe2O3 is obtained by aberration-corrected scanning transmission electron microscopy (AC-STEM). Experimental and computational results further reveal that the threefold hollow binding sites on the OH-terminated surface of α-Fe2O3 anchor the catalysts to provide outstanding stability against detachment or aggregation. The resulting catalysts exhibit high activities toward H2O photooxidation.

4.
Chem Soc Rev ; 46(20): 6099-6110, 2017 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-28640299

RESUMEN

Surface anchoring groups are needed to attach molecular units to photoanodes for photocatalytic water oxidation. The anchoring group must be hydrolytically stable and oxidation resistant under a variety of pH conditions. They must sometimes be electrically conducting for efficient light-induced electron injection from a photosensitizer to a metal oxide, but other times not conducting for accumulation of oxidizing equivalents on a water-oxidation catalyst. Commonly used anchors such as carboxylic acids and phosphonic acids have limited stability in aqueous environments, leading to surface hydrolysis and loss of catalytic function. More hydrolytically stable anchors, such as silatranes and hydroxamic acids, which are oxidation resistant and stable under acidic, neutral, and basic conditions, are more suitable for photoanode applications. Hydroxamic acids can be incorporated into dye molecules to give high electron injection efficiency due to their electrical conductivity and strong electronic coupling to the metal oxide surface. In contrast, silatranes, once bound as siloxanes, have diminished electronic coupling making them useful as catalyst anchors.

5.
Angew Chem Int Ed Engl ; 56(31): 9111-9115, 2017 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-28628943

RESUMEN

Main-group complexes are shown to be viable electrocatalysts for the H2 -evolution reaction (HER) from acid. A series of antimony porphyrins with varying axial ligands were synthesized for electrocatalysis applications. The proton-reduction catalytic properties of TPSb(OH)2 (TP=5,10,15,20-tetra(p-tolyl)porphyrin) with two axial hydroxy ligands were studied in detail, demonstrating catalytic H2 production. Experiments, in conjunction with quantum chemistry calculations, show that the catalytic cycle is driven via the redox activity of both the porphyrin ligand and the Sb center. This study brings insight into main group catalysis and the role of redox-active ligands during catalysis.

6.
J Am Chem Soc ; 138(26): 8076-9, 2016 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-27310487

RESUMEN

Exploration of heterogeneous molecular catalysts combining the atomic-level tunability of molecular structures and the practical handling advantages of heterogeneous catalysts represents an attractive approach to developing high-performance catalysts for important and challenging chemical reactions such as electrochemical carbon dioxide reduction which holds the promise for converting emissions back to fuels utilizing renewable energy. Thus, far, efficient and selective electroreduction of CO2 to deeply reduced products such as hydrocarbons remains a big challenge. Here, we report a molecular copper-porphyrin complex (copper(II)-5,10,15,20-tetrakis(2,6-dihydroxyphenyl)porphyrin) that can be used as a heterogeneous electrocatalyst with high activity and selectivity for reducing CO2 to hydrocarbons in aqueous media. At -0.976 V vs the reversible hydrogen electrode, the catalyst is able to drive partial current densities of 13.2 and 8.4 mA cm(-2) for methane and ethylene production from CO2 reduction, corresponding to turnover frequencies of 4.3 and 1.8 molecules·site(-1)·s(-1) for methane and ethylene, respectively. This represents the highest catalytic activity to date for hydrocarbon production over a molecular CO2 reduction electrocatalyst. The unprecedented catalytic performance is attributed to the built-in hydroxyl groups in the porphyrin structure and the reactivity of the copper(I) metal center.

7.
Inorg Chem ; 55(5): 2427-35, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26901517

RESUMEN

This paper introduces Ir(I)(CO)2(pyalc) (pyalc = (2-pyridyl)-2-propanoate) as an atom-efficient precursor for Ir-based homogeneous oxidation catalysis. This compound was chosen to simplify analysis of the water oxidation catalyst species formed by the previously reported Cp*Ir(III)(pyalc)OH water oxidation precatalyst. Here, we present a comparative study on the chemical and catalytic properties of these two precursors. Previous studies show that oxidative activation of Cp*Ir-based precursors with NaIO4 results in formation of a blue Ir(IV) species. This activation is concomitant with the loss of the placeholder Cp* ligand which oxidatively degrades to form acetic acid, iodate, and other obligatory byproducts. The activation process requires substantial amounts of primary oxidant, and the degradation products complicate analysis of the resulting Ir(IV) species. The species formed from oxidation of the Ir(CO)2(pyalc) precursor, on the other hand, lacks these degradation products (the CO ligands are easily lost upon oxidation) which allows for more detailed examination of the resulting Ir(pyalc) active species both catalytically and spectroscopically, although complete structural analysis is still elusive. Once Ir(CO)2(pyalc) is activated, the system requires acetic acid or acetate to prevent the formation of nanoparticles. Investigation of the activated bis-carbonyl complex also suggests several Ir(pyalc) isomers may exist in solution. By (1)H NMR, activated Ir(CO)2(pyalc) has fewer isomers than activated Cp*Ir complexes, allowing for advanced characterization. Future research in this direction is expected to contribute to a better structural understanding of the active species. A diol crystallization agent was needed for the structure determination of 3.

8.
ACS Org Inorg Au ; 2(5): 427-432, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36855667

RESUMEN

A heterogenized iridium catalyst was employed to perform photoredox catalysis for a collection of mechanistically orthogonal reactions using very low quantities of iridium (0.01-0.1 mol %). The heterogenized construct consists of an organometallic iridium coordination complex bonded to an aluminum metal oxide solid-state support via an anchoring group. The solid-state support allows for easy recovery and reusability of the catalyst. Evaluation of the catalytic activity was performed with five different reactions, showing broad applicability and demonstrating the general potential for a heterogenized strategy. Moreover, the heterogenized catalyst was shown to be reusable up to five times and also mediated the reactions with much higher efficiency than the original processes by employing the corresponding homogeneous catalyst. As a result of the low catalyst loadings employed, the feasibility of reusage, and faster reaction times, this catalyst offers a more sustainable option when precious metal catalysts are used in organic synthesis. Finally, the catalyst was successfully applied to a gram-scale reaction, showing it is susceptible to scalability.

9.
Dalton Trans ; 51(41): 15716-15724, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36177940

RESUMEN

Solar conversion of water into the storable energy carrier H2 can be achieved through photoelectrochemical water splitting using light adsorbing anodes and cathodes bearing O2 and H2 evolving catalysts, respectively. Herein a novel photocathode nanohybrid system is reported. This photocathode consists of a dye-sensitized p-type nickel oxide (NiO) with a perylene-based chromophore (PCA) and a tetra-adamantane modified cobaloxime reduction catalyst (Co) that photo-reduces aqueous protons to H2. An original supramolecular approach was employed, using ß-cyclodextrin functionalized gold nanoparticles (ß-CD-AuNPs) to link the alkane chain of the PCA dye to the adamantane moieties of the cobaloxime catalyst (Co). This new architecture was investigated by photoelectrochemical measurements and via femtosecond-transient absorption spectroscopy. The results show that irradiation of the complete NiO|PCA|ß-CD-AuNPs|Co electrode leads to ultrafast hole injection into NiO (π = 3 ps) from the excited dye, followed by rapid reduction of the catalyst, and finally H2 evolution.

10.
ACS Appl Mater Interfaces ; 12(28): 31372-31381, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32538612

RESUMEN

Mesoporous NiO photocathodes containing the push-pull dye PB6 and alkyl-derivatized cobaloxime catalysts were prepared using surface amide couplings and analyzed for photocatalytic proton reduction catalysis. The length of the alkyl linker used to derivatize the cobalt catalysts was found to correlate to the photocurrent with the highest photocurrent observed using shorter alkyl linkers but the lowest one for samples without linker. The alkyl linkers were also helpful in slowing dye-NiO charge recombination. Photoelectrochemical measurements and femtosecond transient absorption spectroscopic measurements suggested electron transfer to the surface-immobilized catalysts occurred; however, H2 evolution was not observed. Based on UV-vis, X-ray fluorescence spectroscopy (XRF), and X-ray photoelectron spectroscopy (XPS) measurements, the cobalt catalyst appeared to be limiting the photocathode performance mainly via cobalt demetallation from the oxime ligand. This study highlights the need for a deeper understanding of the effect of catalyst molecular design on photocathode performance.

11.
ACS Appl Mater Interfaces ; 12(4): 4501-4509, 2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-31872996

RESUMEN

A facile surface amide-coupling method was examined to attach dye and catalyst molecules to silatrane-decorated NiO electrodes. Using this method, electrodes with a push-pull dye were assembled and characterized by photoelectrochemistry and transient absorption spectroscopy. The dye-sensitized electrodes exhibited hole injection into NiO and good photoelectrochemical stability in water, highlighting the stability of the silatrane anchoring group and the amide linkage. The amide-coupling protocol was further applied to electrodes that contain a molecular proton reduction catalyst for use in photocathode architectures. Evidence for catalyst reduction was observed during photoelectrochemical measurements and via femtosecond-transient absorption spectroscopy demonstrating the possibility for application in photocathodes.

12.
ACS Appl Mater Interfaces ; 11(41): 38294-38302, 2019 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-31549498

RESUMEN

Layer-by-layer growth of Cu2(bdc)2(dabco) surface-mounted metal-organic frameworks (SURMOFs) was investigated on silicon wafers treated with different surface anchoring molecules. Well-oriented growth along the [100] and [001] directions could be achieved with simple protocols: growth along the [100] direction was achieved by substrate pretreatment with 80 °C piranha, while growth along the [001] direction was enabled by only rinsing silicon with absolute ethanol. Growth along the [001] direction produced more homogeneous SURMOF films. Optimization to enhance [001]-preferred orientation growth revealed that small changes in the SURMOF growth sequence (the number of rinse steps and linker concentrations) have a noticeable impact on the final film quality and the number of misaligned crystals. This new straightforward protocol was used to successfully grow other layer pillar-type SURMOFs, including the growth of Cu2(bdc)2(bipy) with simultaneous suppression of framework interpenetration.

13.
ACS Appl Mater Interfaces ; 11(6): 5602-5609, 2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-29893542

RESUMEN

Silatrane surface anchors are protected siloxanes that are known to bond firmly (from pH 2-11) to metal oxide electrodes under heating. However, these conditions are not always compatible with the other functionality present. A silatrane-containing porphyrin molecule and a silatrane-containing ruthenium complex have now been designed, synthesized and optimized conditions have been identified for surface binding. Two mild, room-temperature surface binding methods were explored: binding with or without an acidic pretreatment; these methods were compared to the traditional, harsher binding conditions involving strong heating. We find that a preacidified electrode gave comparable surface loadings at room temperature compared to sensitization by using the previous strong heating method. This was also true on TiO2, SnO2, and nanoITO electrodes and thus may be generalizable. The new, milder binding methods also resulted in excellent aqueous and electrochemical stability from pH 2-11. Using a water-insoluble porphyrin with a silatrane anchor further increased the aqueous stability of the deposit, aided by the insolubility of the porphyrin. Finally, X-ray photoelectron spectroscopy (XPS) data confirmed for the first time that the triethanolamine released from the silatrane on deprotection/binding in turn binds to TiO2, SnO2, and nanoITO electrodes. This undesired triethanolamine deposit was easily removed from the surface by electrochemical voltage cycling or with an aqueous acidic wash for 1 h.

14.
ACS Cent Sci ; 4(9): 1166-1172, 2018 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-30276249

RESUMEN

Heterogeneous catalysts with atomically defined active centers hold great promise for high-performance applications. Among them, catalysts featuring active moieties with more than one metal atom are important for chemical reactions that require synergistic effects but are rarer than single atom catalysts (SACs). The difficulty in synthesizing such catalysts has been a key challenge. Recent progress in preparing dinuclear heterogeneous catalysts (DHCs) from homogeneous molecular precursors has provided an effective route to address this challenge. Nevertheless, only side-on bound DHCs, where both metal atoms are affixed to the supporting substrate, have been reported. The competing end-on binding mode, where only one metal atom is attached to the substrate and the other metal atom is dangling, has been missing. Here, we report the first observation that end-on binding is indeed possible for Ir DHCs supported on WO3. Unambiguous evidence supporting the binding mode was obtained by in situ diffuse reflectance infrared Fourier transform spectroscopy and high-angle annular dark-field scanning transmission electron microscopy. Density functional theory calculations provide additional support for the binding mode, as well as insights into how end-on bound DHCs may be beneficial for solar water oxidation reactions. The results have important implications for future studies of highly effective heterogeneous catalysts for complex chemical reactions.

15.
ChemSusChem ; 10(22): 4526-4534, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-28876510

RESUMEN

The development of water-splitting dye-sensitized photoelectrochemical cells has gained interest owing to their ability to generate renewable fuels from solar energy. In this study, photoanodes were assembled from a SnO2 film sensitized with a combination of a high-potential CF3 -substituted porphyrin dye with a tetrahydropyranyl-protected hydroxamic acid surface-anchoring group and a Cp*Ir (Cp*=pentamethylcyclopentadienyl) water-oxidation catalyst containing a silatrane anchoring group. The dye/catalyst ratios were varied from 2:1 to 32:1 to optimize the photocatalytic water oxidation. Photoelectrochemical measurements showed not only more stable and reproducible photocurrents for lower dye/catalyst ratios but also improved photostability. O2 production was confirmed in real time over a 20 h period with a Clark electrode. Photoanodes prepared from 2:1 and 8:1 dye/catalyst sensitization solutions provided the most active electrodes for photocatalytic water oxidation and performed approximately 30-35 turnovers in 20 h.


Asunto(s)
Iridio/química , Procesos Fotoquímicos , Porfirinas/química , Agua/química , Catálisis , Colorantes/química , Electrodos , Oxidación-Reducción , Fármacos Fotosensibilizantes/química , Energía Solar
16.
Dalton Trans ; 44(47): 20312-5, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26506505

RESUMEN

A ruthenium complex containing silatrane functional groups has been synthesized and covalently bound to a conductive metal oxide film composed of nanoparticulate ITO (nanoITO). The silatrane-derived siloxane surface anchors were found to be stable in the examined range of pH 2 to 11 in aqueous phosphate buffer, and the ruthenium complex was found to have stable electrochemical features with repeated electrochemical cycling. The non-coordinating properties of the silatrane group to metals, which facilitates synthesis of silatrane-labeled coordination complexes, together with the facile surface-binding procedure, robustness of the surface linkages, and stability of the electrochemical properties suggest that incorporating silatrane motifs into ligands for inorganic complexes provides superior properties for attachment of catalysts to metal oxide surfaces under aqueous conditions.

17.
ACS Appl Mater Interfaces ; 4(7): 3738-44, 2012 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-22704293

RESUMEN

Mesoporous alumina was synthesized via a one-pot self-assembly of aluminum isopropoxide and poly(ethylene oxide)-poly(butylene oxide)-poly(ethylene oxide) triblock copolymer in an acidic ethanol solution. The effects of the polymer concentration and nitric acid concentration, independently, on the adsorption properties (such as surface area, pore volume, microporosity, mesoporosity, and pore width) were studied. An increase in the specific surface area and the pore volume was seen for the samples containing a polymer/aluminum isopropoxide wt. ratio up to 0.71 and a polymer/acid wt ratio of 0.88. Titania isopropoxide was also added to the synthesis to illustrate the extension of this approach to alumina-based mixed metal oxides.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA