Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 96(3): 1093-126, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27335446

RESUMEN

Human induced pluripotent stem cells (hiPSCs) have revolutionized the field of human disease modeling, with an enormous potential to serve as paradigm shifting platforms for preclinical trials, personalized clinical diagnosis, and drug treatment. In this review, we describe how hiPSCs could transition cardiac healthcare away from simple disease diagnosis to prediction and prevention, bridging the gap between basic and clinical research to bring the best science to every patient.


Asunto(s)
Enfermedades Cardiovasculares/terapia , Células Madre Pluripotentes Inducidas , Medicina de Precisión , Humanos
2.
Stem Cells ; 36(2): 265-277, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29086457

RESUMEN

The ability to differentiate human pluripotent stem cells (hPSCs) into cardiomyocytes (CMs) makes them an attractive source for repairing injured myocardium, disease modeling, and drug testing. Although current differentiation protocols yield hPSC-CMs to >90% efficiency, hPSC-CMs exhibit immature characteristics. With the goal of overcoming this limitation, we tested the effects of varying passive stretch on engineered heart muscle (EHM) structural and functional maturation, guided by computational modeling. Human embryonic stem cells (hESCs, H7 line) or human induced pluripotent stem cells (IMR-90 line) were differentiated to hPSC-derived cardiomyocytes (hPSC-CMs) in vitro using a small molecule based protocol. hPSC-CMs were characterized by troponin+ flow cytometry as well as electrophysiological measurements. Afterwards, 1.2 × 106 hPSC-CMs were mixed with 0.4 × 106 human fibroblasts (IMR-90 line) (3:1 ratio) and type-I collagen. The blend was cast into custom-made 12-mm long polydimethylsiloxane reservoirs to vary nominal passive stretch of EHMs to 5, 7, or 9 mm. EHM characteristics were monitored for up to 50 days, with EHMs having a passive stretch of 7 mm giving the most consistent formation. Based on our initial macroscopic observations of EHM formation, we created a computational model that predicts the stress distribution throughout EHMs, which is a function of cellular composition, cellular ratio, and geometry. Based on this predictive modeling, we show cell alignment by immunohistochemistry and coordinated calcium waves by calcium imaging. Furthermore, coordinated calcium waves and mechanical contractions were apparent throughout entire EHMs. The stiffness and active forces of hPSC-derived EHMs are comparable with rat neonatal cardiomyocyte-derived EHMs. Three-dimensional EHMs display increased expression of mature cardiomyocyte genes including sarcomeric protein troponin-T, calcium and potassium ion channels, ß-adrenergic receptors, and t-tubule protein caveolin-3. Passive stretch affects the structural and functional maturation of EHMs. Based on our predictive computational modeling, we show how to optimize cell alignment and calcium dynamics within EHMs. These findings provide a basis for the rational design of EHMs, which enables future scale-up productions for clinical use in cardiovascular tissue engineering. Stem Cells 2018;36:265-277.


Asunto(s)
Biología Computacional/métodos , Miocardio/citología , Línea Celular , Citometría de Flujo , Humanos , Miocardio/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Ingeniería de Tejidos/métodos
3.
Circ Res ; 120(10): 1561-1571, 2017 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-28246128

RESUMEN

RATIONALE: Targeted genetic engineering using programmable nucleases such as transcription activator-like effector nucleases (TALENs) is a valuable tool for precise, site-specific genetic modification in the human genome. OBJECTIVE: The emergence of novel technologies such as human induced pluripotent stem cells (iPSCs) and nuclease-mediated genome editing represent a unique opportunity for studying cardiovascular diseases in vitro. METHODS AND RESULTS: By incorporating extensive literature and database searches, we designed a collection of TALEN constructs to knockout 88 human genes that are associated with cardiomyopathies and congenital heart diseases. The TALEN pairs were designed to induce double-strand DNA break near the starting codon of each gene that either disrupted the start codon or introduced a frameshift mutation in the early coding region, ensuring faithful gene knockout. We observed that all the constructs were active and disrupted the target locus at high frequencies. To illustrate the utility of the TALEN-mediated knockout technique, 6 individual genes (TNNT2, LMNA/C, TBX5, MYH7, ANKRD1, and NKX2.5) were knocked out with high efficiency and specificity in human iPSCs. By selectively targeting a pathogenic mutation (TNNT2 p.R173W) in patient-specific iPSC-derived cardiac myocytes, we demonstrated that the knockout strategy ameliorates the dilated cardiomyopathy phenotype in vitro. In addition, we modeled the Holt-Oram syndrome in iPSC-cardiac myocytes in vitro and uncovered novel pathways regulated by TBX5 in human cardiac myocyte development. CONCLUSIONS: Collectively, our study illustrates the powerful combination of iPSCs and genome editing technologies for understanding the biological function of genes, and the pathological significance of genetic variants in human cardiovascular diseases. The methods, strategies, constructs, and iPSC lines developed in this study provide a validated, readily available resource for cardiovascular research.


Asunto(s)
Enfermedades Cardiovasculares/genética , Técnicas de Inactivación de Genes/métodos , Biblioteca de Genes , Ingeniería Genética/métodos , Células Madre Pluripotentes Inducidas/fisiología , Secuencia de Bases , Enfermedades Cardiovasculares/terapia , Células Cultivadas , Marcación de Gen/métodos , Humanos , Células Madre Pluripotentes Inducidas/trasplante
4.
Nat Methods ; 11(8): 855-60, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24930130

RESUMEN

Existing methods for human induced pluripotent stem cell (hiPSC) cardiac differentiation are efficient but require complex, undefined medium constituents that hinder further elucidation of the molecular mechanisms of cardiomyogenesis. Using hiPSCs derived under chemically defined conditions on synthetic matrices, we systematically developed an optimized cardiac differentiation strategy, using a chemically defined medium consisting of just three components: the basal medium RPMI 1640, L-ascorbic acid 2-phosphate and rice-derived recombinant human albumin. Along with small molecule-based induction of differentiation, this protocol produced contractile sheets of up to 95% TNNT2(+) cardiomyocytes at a yield of up to 100 cardiomyocytes for every input pluripotent cell and was effective in 11 hiPSC lines tested. This chemically defined platform for cardiac specification of hiPSCs will allow the elucidation of cardiomyocyte macromolecular and metabolic requirements and will provide a minimal system for the study of maturation and subtype specification.


Asunto(s)
Miocitos Cardíacos/citología , Diferenciación Celular , Medios de Cultivo , Humanos , Células Madre Pluripotentes Inducidas/citología
5.
Circ Res ; 114(1): 21-7, 2014 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-24385505

RESUMEN

Cardiac regeneration strategies and de novo generation of cardiomyocytes have long been significant areas of research interest in cardiovascular medicine. In this review, we outline a variety of common cell sources and methods used to regenerate cardiomyocytes and highlight the important role that key Circulation Research articles have played in this flourishing field.


Asunto(s)
Corazón/fisiología , Miocitos Cardíacos/citología , Regeneración , Trasplante de Células Madre , Animales , Diferenciación Celular , Cardiopatías/cirugía , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Investigación con Células Madre/historia , Trasplante de Células Madre/historia , Trasplante de Células Madre/tendencias , Células Madre/clasificación , Células Madre/citología
6.
Circ Res ; 115(6): 556-66, 2014 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-25015077

RESUMEN

RATIONALE: Viral myocarditis is a life-threatening illness that may lead to heart failure or cardiac arrhythmias. A major causative agent for viral myocarditis is the B3 strain of coxsackievirus, a positive-sense RNA enterovirus. However, human cardiac tissues are difficult to procure in sufficient enough quantities for studying the mechanisms of cardiac-specific viral infection. OBJECTIVE: This study examined whether human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) could be used to model the pathogenic processes of coxsackievirus-induced viral myocarditis and to screen antiviral therapeutics for efficacy. METHODS AND RESULTS: hiPSC-CMs were infected with a luciferase-expressing coxsackievirus B3 strain (CVB3-Luc). Brightfield microscopy, immunofluorescence, and calcium imaging were used to characterize virally infected hiPSC-CMs for alterations in cellular morphology and calcium handling. Viral proliferation in hiPSC-CMs was quantified using bioluminescence imaging. Antiviral compounds including interferonß1, ribavirin, pyrrolidine dithiocarbamate, and fluoxetine were tested for their capacity to abrogate CVB3-Luc proliferation in hiPSC-CMs in vitro. The ability of these compounds to reduce CVB3-Luc proliferation in hiPSC-CMs was consistent with reported drug effects in previous studies. Mechanistic analyses via gene expression profiling of hiPSC-CMs infected with CVB3-Luc revealed an activation of viral RNA and protein clearance pathways after interferonß1 treatment. CONCLUSIONS: This study demonstrates that hiPSC-CMs express the coxsackievirus and adenovirus receptor, are susceptible to coxsackievirus infection, and can be used to predict antiviral drug efficacy. Our results suggest that the hiPSC-CM/CVB3-Luc assay is a sensitive platform that can screen novel antiviral therapeutics for their effectiveness in a high-throughput fashion.


Asunto(s)
Antivirales/uso terapéutico , Enterovirus Humano B/aislamiento & purificación , Infecciones por Enterovirus/tratamiento farmacológico , Modelos Cardiovasculares , Miocarditis/tratamiento farmacológico , Miocitos Cardíacos/patología , Células Madre Pluripotentes/patología , Antivirales/farmacología , Calcio/metabolismo , Proliferación Celular , Células Cultivadas , Evaluación Preclínica de Medicamentos , Infecciones por Enterovirus/metabolismo , Humanos , Técnicas In Vitro , Miocarditis/metabolismo , Miocarditis/virología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/virología , Células Madre Pluripotentes/efectos de los fármacos , Células Madre Pluripotentes/virología , ARN Viral/metabolismo , Resultado del Tratamiento
7.
Bioessays ; 35(3): 281-98, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22886688

RESUMEN

The emphasis in human pluripotent stem cell (hPSC) technologies has shifted from cell therapy to in vitro disease modelling and drug screening. This review examines why this shift has occurred, and how current technological limitations might be overcome to fully realise the potential of hPSCs. Details are provided for all disease-specific human induced pluripotent stem cell lines spanning a dozen dysfunctional organ systems. Phenotype and pharmacology have been examined in only 17 of 63 lines, primarily those that model neurological and cardiac conditions. Drug screening is most advanced in hPSC-cardiomyocytes. Responses for almost 60 agents include examples of how careful tests in hPSC-cardiomyocytes have improved on existing in vitro assays, and how these cells have been integrated into high throughput imaging and electrophysiology industrial platforms. Such successes will provide an incentive to overcome bottlenecks in hPSC technology such as improving cell maturity and industrial scalability whilst reducing cost.


Asunto(s)
Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Células Madre Pluripotentes/metabolismo , Animales , Ensayos Analíticos de Alto Rendimiento , Humanos , Fenotipo , Células Madre Pluripotentes/citología , Trasplante de Células Madre
8.
Eur Heart J ; 35(16): 1078-87, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23470493

RESUMEN

AIMS: Long-QT syndromes (LQTS) are mostly autosomal-dominant congenital disorders associated with a 1:1000 mutation frequency, cardiac arrest, and sudden death. We sought to use cardiomyocytes derived from human-induced pluripotency stem cells (hiPSCs) as an in vitro model to develop and evaluate gene-based therapeutics for the treatment of LQTS. METHODS AND RESULTS: We produced LQTS-type 2 (LQT2) hiPSC cardiomyocytes carrying a KCNH2 c.G1681A mutation in a IKr ion-channel pore, which caused impaired glycosylation and channel transport to cell surface. Allele-specific RNA interference (RNAi) directed towards the mutated KCNH2 mRNA caused knockdown, while leaving the wild-type mRNA unaffected. Electrophysiological analysis of patient-derived LQT2 hiPSC cardiomyocytes treated with mutation-specific siRNAs showed normalized action potential durations (APDs) and K(+) currents with the concurrent rescue of spontaneous and drug-induced arrhythmias (presented as early-afterdepolarizations). CONCLUSIONS: These findings provide in vitro evidence that allele-specific RNAi can rescue diseased phenotype in LQTS cardiomyocytes. This is a potentially novel route for the treatment of many autosomal-dominant-negative disorders, including those of the heart.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/genética , Síndrome de QT Prolongado/genética , Miocitos Cardíacos/fisiología , Células Madre Pluripotentes/fisiología , Interferencia de ARN/fisiología , Canal de Potasio ERG1 , Fenómenos Electrofisiológicos/genética , Expresión Génica/genética , Técnicas de Silenciamiento del Gen , Terapia Genética , Humanos , Síndrome de QT Prolongado/fisiopatología , Síndrome de QT Prolongado/terapia , Mutación Missense/genética , Fenotipo , Transfección
9.
Eur Heart J ; 32(8): 952-62, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21367833

RESUMEN

AIMS: Congenital long QT syndromes (LQTSs) are associated with prolonged ventricular repolarization and sudden cardiac death. Limitations to existing clinical therapeutic management strategies prompted us to develop a novel human in vitro drug-evaluation system for LQTS type 2 (LQT2) that will complement the existing in vitro and in vivo models. METHODS AND RESULTS: Skin fibroblasts from a patient with a KCNH2 G1681A mutation (encodes I(Kr) potassium ion channel) were reprogrammed to human induced pluripotent stem cells (hiPSCs), which were subsequently differentiated to functional cardiomyocytes. Relative to controls (including the patient's mother), multi-electrode array and patch-clamp electrophysiology of LQT2-hiPSC cardiomyocytes showed prolonged field/action potential duration. When LQT2-hiPSC cardiomyocytes were exposed to E4031 (an I(Kr) blocker), arrhythmias developed and these presented as early after depolarizations (EADs) in the action potentials. In contrast to control cardiomyocytes, LQT2-hiPSC cardiomyocytes also developed EADs when challenged with the clinically used stressor, isoprenaline. This effect was reversed by ß-blockers, propranolol, and nadolol, the latter being used for the patient's therapy. Treatment of cardiomyocytes with experimental potassium channel enhancers, nicorandil and PD118057, caused action potential shortening and in some cases could abolish EADs. Notably, combined treatment with isoprenaline (enhancers/isoprenaline) caused EADs, but this effect was reversed by nadolol. CONCLUSIONS: Findings from this paper demonstrate that patient LQT2-hiPSC cardiomyocytes respond appropriately to clinically relevant pharmacology and will be a valuable human in vitro model for testing experimental drug combinations.


Asunto(s)
Cromosomas Humanos Par 7/genética , Canales de Potasio Éter-A-Go-Go/genética , Células Madre Pluripotentes Inducidas/fisiología , Síndrome de QT Prolongado/genética , Mutación Puntual/genética , Adolescente , Agonistas Adrenérgicos beta/farmacología , Antagonistas Adrenérgicos beta/farmacología , Antiarrítmicos/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Evaluación Preclínica de Medicamentos/métodos , Canal de Potasio ERG1 , Electrocardiografía , Femenino , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Isoproterenol/farmacología , Síndrome de QT Prolongado/tratamiento farmacológico , Miocitos Cardíacos/fisiología , Nicorandil/farmacología
10.
J Pharmacol Toxicol Methods ; 105: 106889, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32565326

RESUMEN

Safety pharmacology is an essential part of drug development aiming to identify, evaluate and investigate undesirable pharmacodynamic properties of a drug primarily prior to clinical trials. In particular, cardiovascular adverse drug reactions (ADR) have halted many drug development programs. Safety pharmacology has successfully implemented a screening strategy to detect cardiovascular liabilities, but there is room for further refinement. In this setting, we present the INSPIRE project, a European Training Network in safety pharmacology for Early Stage Researchers (ESRs), funded by the European Commission's H2020-MSCA-ITN programme. INSPIRE has recruited 15 ESR fellows that will conduct an individual PhD-research project for a period of 36 months. INSPIRE aims to be complementary to ongoing research initiatives. With this as a goal, an inventory of collaborative research initiatives in safety pharmacology was created and the ESR projects have been designed to be complementary to this roadmap. Overall, INSPIRE aims to improve cardiovascular safety evaluation, either by investigating technological innovations or by adding mechanistic insight in emerging safety concerns, as observed in the field of cardio-oncology. Finally, in addition to its hands-on research pillar, INSPIRE will organize a number of summer schools and workshops that will be open to the wider community as well. In summary, INSPIRE aims to foster both research and training in safety pharmacology and hopes to inspire the future generation of safety scientists.


Asunto(s)
Sistema Cardiovascular/efectos de los fármacos , Desarrollo de Medicamentos/métodos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Farmacología/métodos , Humanos , Seguridad
11.
Stem Cell Reports ; 12(6): 1232-1241, 2019 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-31105048

RESUMEN

Chagas disease (ChD) is one of the most neglected tropical diseases, with cardiomyopathy being the main cause of death in Trypanosoma cruzi-infected patients. As the parasite actively replicates in cardiomyocytes (CMs), the heart remains a key target organ in the pathogenesis of ChD. Here we modeled ChD using human induced pluripotent stem cell-derived CMs (iPSC-CMs) to understand the complex interplay between the parasite and host cells. We showed that iPSC-CMs can get infected with the T. cruzi Y strain and that all parasite cycle stages can be identified in our model system. Importantly, characterization of T. cruzi-infected iPSC-CMs showed significant changes in their gene expression profile, cell contractility, and distribution of key cardiac markers. Moreover, these infected iPSC-CMs exhibited a pro-inflammatory profile as indicated by significantly elevated cytokine levels and cell-trafficking regulators. We believe our iPSC-CM model is a valuable platform to explore new treatment strategies for ChD.


Asunto(s)
Cardiomiopatía Chagásica/metabolismo , Células Madre Pluripotentes Inducidas , Modelos Biológicos , Miocitos Cardíacos , Trypanosoma cruzi/metabolismo , Cardiomiopatía Chagásica/patología , Cardiomiopatía Chagásica/terapia , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/parasitología , Células Madre Pluripotentes Inducidas/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/parasitología , Miocitos Cardíacos/patología
12.
Microsyst Nanoeng ; 3: 16080, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-31057850

RESUMEN

The measurement of the electrophysiology of human pluripotent stem cell-derived cardiomyocytes is critical for their biomedical applications, from disease modeling to drug screening. Yet, a method that enables the high-throughput intracellular electrophysiology measurement of single cardiomyocytes in adherent culture is not available. To address this area, we have fabricated vertical nanopillar electrodes that can record intracellular action potentials from up to 60 single beating cardiomyocytes. Intracellular access is achieved by highly localized electroporation, which allows for low impedance electrical access to the intracellular voltage. Herein, we demonstrate that this method provides the accurate measurement of the shape and duration of intracellular action potentials, validated by patch clamp, and can facilitate cellular drug screening and disease modeling using human pluripotent stem cells. This study validates the use of nanopillar electrodes for myriad further applications of human pluripotent stem cell-derived cardiomyocytes such as cardiomyocyte maturation monitoring and electrophysiology-contractile force correlation.

13.
Cell Rep ; 20(8): 1978-1990, 2017 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-28834758

RESUMEN

There is growing interest in using embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) derivatives for tissue regeneration. However, an increased understanding of human immune responses to stem cell-derived allografts is necessary for maintaining long-term graft persistence. To model this alloimmunity, humanized mice engrafted with human hematopoietic and immune cells could prove to be useful. In this study, an in-depth analysis of graft-infiltrating human lymphocytes and splenocytes revealed that humanized mice incompletely model human immune responses toward allogeneic stem cells and their derivatives. Furthermore, using an "allogenized" mouse model, we show the feasibility of reconstituting immunodeficient mice with a functional mouse immune system and describe a key role of innate immune cells in the rejection of mouse stem cell allografts.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas/métodos , Inmunidad Innata/inmunología , Células Madre Pluripotentes/metabolismo , Acondicionamiento Pretrasplante/métodos , Animales , Modelos Animales de Enfermedad , Rechazo de Injerto , Humanos , Ratones
14.
Sci Transl Med ; 9(377)2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-28202772

RESUMEN

Tyrosine kinase inhibitors (TKIs), despite their efficacy as anticancer therapeutics, are associated with cardiovascular side effects ranging from induced arrhythmias to heart failure. We used human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), generated from 11 healthy individuals and 2 patients receiving cancer treatment, to screen U.S. Food and Drug Administration-approved TKIs for cardiotoxicities by measuring alterations in cardiomyocyte viability, contractility, electrophysiology, calcium handling, and signaling. With these data, we generated a "cardiac safety index" to reflect the cardiotoxicities of existing TKIs. TKIs with low cardiac safety indices exhibit cardiotoxicity in patients. We also derived endothelial cells (hiPSC-ECs) and cardiac fibroblasts (hiPSC-CFs) to examine cell type-specific cardiotoxicities. Using high-throughput screening, we determined that vascular endothelial growth factor receptor 2 (VEGFR2)/platelet-derived growth factor receptor (PDGFR)-inhibiting TKIs caused cardiotoxicity in hiPSC-CMs, hiPSC-ECs, and hiPSC-CFs. With phosphoprotein analysis, we determined that VEGFR2/PDGFR-inhibiting TKIs led to a compensatory increase in cardioprotective insulin and insulin-like growth factor (IGF) signaling in hiPSC-CMs. Up-regulating cardioprotective signaling with exogenous insulin or IGF1 improved hiPSC-CM viability during cotreatment with cardiotoxic VEGFR2/PDGFR-inhibiting TKIs. Thus, hiPSC-CMs can be used to screen for cardiovascular toxicities associated with anticancer TKIs, and the results correlate with clinical phenotypes. This approach provides unexpected insights, as illustrated by our finding that toxicity can be alleviated via cardioprotective insulin/IGF signaling.


Asunto(s)
Cardiotoxicidad/patología , Ensayos Analíticos de Alto Rendimiento/métodos , Células Madre Pluripotentes Inducidas/metabolismo , Inhibidores de Proteínas Quinasas/toxicidad , Biomarcadores/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Insulina/farmacología , Factor I del Crecimiento Similar a la Insulina/farmacología , Modelos Biológicos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Sarcómeros/metabolismo , Transducción de Señal/efectos de los fármacos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
15.
Nat Rev Cardiol ; 13(6): 333-49, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27009425

RESUMEN

The advent of human induced pluripotent stem cell (hiPSC) technology has revitalized the efforts in the past decade to realize more fully the potential of human embryonic stem cells for scientific research. Adding to the possibility of generating an unlimited amount of any cell type of interest, hiPSC technology now enables the derivation of cells with patient-specific phenotypes. Given the introduction and implementation of the large-scale Precision Medicine Initiative, hiPSC technology will undoubtedly have a vital role in the advancement of cardiovascular research and medicine. In this Review, we summarize the progress that has been made in the field of hiPSC technology, with particular emphasis on cardiovascular disease modelling and drug development. The growing roles of hiPSC technology in the practice of precision medicine will also be discussed.


Asunto(s)
Enfermedades Cardiovasculares/tratamiento farmacológico , Células Madre Pluripotentes Inducidas , Modelos Cardiovasculares , Medicina de Precisión , Enfermedades Cardiovasculares/genética , Enfermedades Cardiovasculares/prevención & control , Diferenciación Celular , Técnicas de Reprogramación Celular , Descubrimiento de Drogas , Células Endoteliales/citología , Humanos , Miocitos Cardíacos/citología , Miocitos del Músculo Liso/citología
16.
Methods Mol Biol ; 1353: 119-30, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-25690476

RESUMEN

The generation of cardiomyocytes from human induced pluripotent stem cells (hiPSCs) provides a source of cells that accurately recapitulate the human cardiac pathophysiology. The application of these cells allows for modeling of cardiovascular diseases, providing a novel understanding of human disease mechanisms and assessment of therapies. Here, we describe a stepwise protocol developed in our laboratory for the generation of hiPSCs from patients with a specific disease phenotype, long-term hiPSC culture and cryopreservation, differentiation of hiPSCs to cardiomyocytes, and assessment of disease phenotypes. Our protocol combines a number of innovative tools that include a codon-optimized mini intronic plasmid (CoMiP), chemically defined culture conditions to achieve high efficiencies of reprogramming and differentiation, and calcium imaging for assessment of cardiomyocyte phenotypes. Thus, this protocol provides a complete guide to use a patient cohort on a testable cardiomyocyte platform for pharmacological drug assessment.


Asunto(s)
Cardiomiopatía Dilatada/patología , Reprogramación Celular , Fibroblastos/citología , Células Madre Pluripotentes Inducidas/citología , Modelos Biológicos , Miocitos Cardíacos/citología , Antígenos de Superficie/genética , Antígenos de Superficie/metabolismo , Biomarcadores/metabolismo , Calcio/metabolismo , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Diferenciación Celular , Criopreservación , Dermis/citología , Dermis/metabolismo , Fibroblastos/metabolismo , Expresión Génica , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Péptidos y Proteínas de Señalización Intercelular/farmacología , Imagen Molecular , Mutación , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Plásmidos/química , Plásmidos/metabolismo , Cultivo Primario de Células , Proteoglicanos/genética , Proteoglicanos/metabolismo , Factores de Transcripción SOXB1/genética , Factores de Transcripción SOXB1/metabolismo , Pase Seriado , Troponina T/genética , Troponina T/metabolismo
17.
Nat Med ; 22(5): 547-56, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27089514

RESUMEN

Doxorubicin is an anthracycline chemotherapy agent effective in treating a wide range of malignancies, but it causes a dose-related cardiotoxicity that can lead to heart failure in a subset of patients. At present, it is not possible to predict which patients will be affected by doxorubicin-induced cardiotoxicity (DIC). Here we demonstrate that patient-specific human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) can recapitulate the predilection to DIC of individual patients at the cellular level. hiPSC-CMs derived from individuals with breast cancer who experienced DIC were consistently more sensitive to doxorubicin toxicity than hiPSC-CMs from patients who did not experience DIC, with decreased cell viability, impaired mitochondrial and metabolic function, impaired calcium handling, decreased antioxidant pathway activity, and increased reactive oxygen species production. Taken together, our data indicate that hiPSC-CMs are a suitable platform to identify and characterize the genetic basis and molecular mechanisms of DIC.


Asunto(s)
Antibióticos Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Doxorrubicina/farmacología , Insuficiencia Cardíaca/inducido químicamente , Mitocondrias Cardíacas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Adulto , Anciano , Antibióticos Antineoplásicos/efectos adversos , Calcio/metabolismo , Cardiotoxicidad/genética , Supervivencia Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Susceptibilidad a Enfermedades , Doxorrubicina/efectos adversos , Femenino , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Insuficiencia Cardíaca/genética , Humanos , Células Madre Pluripotentes Inducidas , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Persona de Mediana Edad , Mitocondrias Cardíacas/metabolismo , Miocitos Cardíacos/metabolismo , Polimorfismo de Nucleótido Simple , Especies Reactivas de Oxígeno/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcriptoma
18.
Cell Stem Cell ; 19(3): 311-25, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27545504

RESUMEN

Understanding individual susceptibility to drug-induced cardiotoxicity is key to improving patient safety and preventing drug attrition. Human induced pluripotent stem cells (hiPSCs) enable the study of pharmacological and toxicological responses in patient-specific cardiomyocytes (CMs) and may serve as preclinical platforms for precision medicine. Transcriptome profiling in hiPSC-CMs from seven individuals lacking known cardiovascular disease-associated mutations and in three isogenic human heart tissue and hiPSC-CM pairs showed greater inter-patient variation than intra-patient variation, verifying that reprogramming and differentiation preserve patient-specific gene expression, particularly in metabolic and stress-response genes. Transcriptome-based toxicology analysis predicted and risk-stratified patient-specific susceptibility to cardiotoxicity, and functional assays in hiPSC-CMs using tacrolimus and rosiglitazone, drugs targeting pathways predicted to produce cardiotoxicity, validated inter-patient differential responses. CRISPR/Cas9-mediated pathway correction prevented drug-induced cardiotoxicity. Our data suggest that hiPSC-CMs can be used in vitro to predict and validate patient-specific drug safety and efficacy, potentially enabling future clinical approaches to precision medicine.


Asunto(s)
Perfilación de la Expresión Génica , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Miocitos Cardíacos/citología , Tacrolimus/efectos adversos , Tiazolidinedionas/efectos adversos , Sistemas CRISPR-Cas/genética , Muerte Celular/efectos de los fármacos , Edición Génica , Genoma Humano , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Humanos , Secuencias Invertidas Repetidas/genética , Miocitos Cardíacos/metabolismo , Rosiglitazona , Resultado del Tratamiento
19.
Cell Stem Cell ; 17(1): 89-100, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26095046

RESUMEN

ß-adrenergic signaling pathways mediate key aspects of cardiac function. Its dysregulation is associated with a range of cardiac diseases, including dilated cardiomyopathy (DCM). Previously, we established an iPSC model of familial DCM from patients with a mutation in TNNT2, a sarcomeric protein. Here, we found that the ß-adrenergic agonist isoproterenol induced mature ß-adrenergic signaling in iPSC-derived cardiomyocytes (iPSC-CMs) but that this pathway was blunted in DCM iPSC-CMs. Although expression levels of several ß-adrenergic signaling components were unaltered between control and DCM iPSC-CMs, we found that phosphodiesterases (PDEs) 2A and PDE3A were upregulated in DCM iPSC-CMs and that PDE2A was also upregulated in DCM patient tissue. We further discovered increased nuclear localization of mutant TNNT2 and epigenetic modifications of PDE genes in both DCM iPSC-CMs and patient tissue. Notably, pharmacologic inhibition of PDE2A and PDE3A restored cAMP levels and ameliorated the impaired ß-adrenergic signaling of DCM iPSC-CMs, suggesting therapeutic potential.


Asunto(s)
Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Receptores Adrenérgicos beta/metabolismo , Agonistas Adrenérgicos beta/farmacología , Cardiomiopatía Dilatada/patología , Diferenciación Celular , Células Cultivadas , Epigénesis Genética , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/patología , Isoproterenol/farmacología , Modelos Cardiovasculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación , Contracción Miocárdica/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Miocitos Cardíacos/fisiología , Transducción de Señal , Troponina T/genética , Troponina T/metabolismo , Regulación hacia Arriba
20.
Sci Transl Med ; 6(239): 239ps6, 2014 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-24898747

RESUMEN

A major research focus in the field of cardiovascular medicine is the prospect of using stem cells and progenitor cells for cardiac regeneration. With the advent of induced pluripotent stem cell (iPSC) technology, major efforts are also underway to use iPSCs to model heart disease, to screen for new drugs, and to test candidate drugs for cardiotoxicity. Here, we discuss recent advances in the exciting fields of stem cells and cardiovascular disease.


Asunto(s)
Descubrimiento de Drogas , Cardiopatías/terapia , Modelos Cardiovasculares , Trasplante de Células Madre , Células Madre/citología , Humanos , Cicatrización de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA