Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Anal Biochem ; 685: 115392, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-37967784

RESUMEN

Sulfur is essential in the inception of life and crucial for maintaining human health. This mineral is primarily supplied through the intake of proteins and is used for synthesizing various sulfur-containing biomolecules. Recent research has highlighted the biological significance of endogenous supersulfides, which include reactive persulfide species and sulfur catenated residues in thiol and proteins. Ingestion of exogenous sulfur compounds is essential for endogenous supersulfide production. However, the content and composition of supersulfides in foods remain unclear. This study investigated the supersulfide profiles of protein-rich foods, including edible animal meat and beans. Quantification of the supersulfide content revealed that natto, chicken liver, and bean sprouts contained abundant supersulfides. In general, the supersulfide content in beans and their derivatives was higher than that in animal meat. The highest proportion (2.15 %) was detected in natto, a traditional Japanese fermented soybean dish. These results suggest that the abundance of supersulfides, especially in foods like natto and bean sprouts, may contribute to their health-promoting properties. Our findings may have significant biological implications and warrant developing novel dietary intervention for the human health-promoting effects of dietary supersulfides abundantly present in protein-rich foods such as natto and bean sprouts.


Asunto(s)
Glycine max , Alimentos de Soja , Humanos , Carne , Azufre
2.
FASEB J ; 36(1): e22096, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34907600

RESUMEN

Tuberculosis is a communicable disease caused by Mycobacterium tuberculosis which primarily infects macrophages and establishes intracellular parasitism. A mycobacterial virulence factor Zn2+ metalloprotease 1 (Zmp1) is known to suppress interleukin (IL)-1ß production by inhibiting caspase-1 resulting in phagosome maturation arrest. However, the molecular mechanism of caspase-1 inhibition by Zmp1 is still elusive. Here, we identified GRIM-19 (also known as NDUFA13), an essential subunit of mitochondrial respiratory chain complex I, as a novel Zmp1-binding protein. Using the CRISPR/Cas9 system, we generated GRIM-19 knockout murine macrophage cell line J774.1 and found that GRIM-19 is essential for IL-1ß production during mycobacterial infection as well as in response to NLRP3 inflammasome-activating stimuli such as extracellular ATP or nigericin. We also found that GRIM-19 is required for the generation of mitochondrial reactive oxygen species and NLRP3-dependent activation of caspase-1. Loss of GRIM-19 or forced expression of Zmp1 resulted in a decrease in mitochondrial membrane potential. Our study revealed a previously unrecognized role of GRIM-19 as an essential regulator of NLRP3 inflammasome and a molecular mechanism underlying Zmp1-mediated suppression of IL-1ß production during mycobacterial infection.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Inflamasomas/metabolismo , Macrófagos/metabolismo , Mycobacterium tuberculosis/metabolismo , NADH NADPH Oxidorreductasas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Bacterianas , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Inflamasomas/genética , Metaloproteasas , Ratones , Membranas Mitocondriales/metabolismo , Mycobacterium tuberculosis/genética , NADH NADPH Oxidorreductasas/genética , Proteína con Dominio Pirina 3 de la Familia NLR/genética
3.
Tohoku J Exp Med ; 261(1): 35-41, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37316278

RESUMEN

Recently, the relationship between Helicobacter cinaedi (H. cinaedi) infection and several diseases, including cardiovascular and central nervous system disorders, bone and soft tissue disorders, and infectious abdominal aortic aneurysms (AAAs), has been reported. Moreover, H. cinaedi may be associated with arteriosclerosis. In the present study, we investigated the association between H. cinaedi infection and clinically uninfected AAAs. Genetic detection of H. cinaedi in the abdominal aneurysm wall was attempted in 39 patients with AAA undergoing elective open surgery between June 2019 and June 2020. DNA samples extracted from the arterial wall obtained during surgery were analyzed using nested polymerase chain reaction (PCR). The target gene region was the H. cinaedi-specific cytolethal distending toxin subunit B (cdtB). Nine (23.1%) of 39 patients showed positive bands corresponding to H. cinaedi, and further sequencing analyses demonstrated the presence of H. cinaedi DNAs in their aneurysm walls. In contrast, all the non-aneurysm arterial walls in our patients were negative for H. cinaedi. In conclusion, this is the first report of the detection of H. cinaedi in the walls of a clinically non-infectious AAA.


Asunto(s)
Aterosclerosis , Infecciones por Helicobacter , Helicobacter , Humanos , Helicobacter/genética , Aterosclerosis/complicaciones , Infecciones por Helicobacter/complicaciones
4.
Nitric Oxide ; 116: 47-64, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34534626

RESUMEN

Sulfides and persulfides/polysulfides (R-Sn-R', n > 2; R-Sn-H, n > 1) are endogenously produced metabolites that are abundant in mammalian and human cells and tissues. The most typical persulfides that are widely distributed among different organisms include various reactive persulfides-low-molecular-weight thiol compounds such as cysteine hydropersulfide, glutathione hydropersulfide, and glutathione trisulfide as well as protein-bound thiols. These species are generally more redox-active than are other simple thiols and disulfides. Although hydrogen sulfide (H2S) has been suggested for years to be a small signaling molecule, it is intimately linked biochemically to persulfides and may actually be more relevant as a marker of functionally active persulfides. Reactive persulfides can act as powerful antioxidants and redox signaling species and are involved in energy metabolism. Recent evidence revealed that cysteinyl-tRNA synthetases (CARSs) act as the principal cysteine persulfide synthases in mammals and contribute significantly to endogenous persulfide/polysulfide production, in addition to being associated with a battery of enzymes including cystathionine ß-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase, which have been described as H2S-producing enzymes. The reactive sulfur metabolites including persulfides/polysulfides derived from CARS2, a mitochondrial isoform of CARS, also mediate not only mitochondrial biogenesis and bioenergetics but also anti-inflammatory and immunomodulatory functions. The physiological roles of persulfides, their biosynthetic pathways, and their pathophysiology in various diseases are not fully understood, however. Developing basic and high precision techniques and methods for the detection, characterization, and quantitation of sulfides and persulfides is therefore of great importance so as to thoroughly understand and clarify the exact functions and roles of these species in cells and in vivo.


Asunto(s)
Técnicas de Química Analítica/métodos , Sulfuro de Hidrógeno/análisis , Sulfuros/análisis , Animales , Línea Celular , Humanos , Sulfuro de Hidrógeno/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas/análisis , Proteínas/química , Proteómica/métodos , Sulfuros/metabolismo
5.
Nutr Neurosci ; 24(9): 688-696, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31581905

RESUMEN

Objectives: Dried bonito dashi, a traditional Japanese fish broth made from dried bonito tuna, enhances food palatability due to its specific umami flavor characteristics. However, the pattern of brain activation following dashi ingestion has not been previously investigated.Methods: We mapped activation sites of the rat brain after intragastric loads of dried bonito dashi by measuring neuronal levels of the Fos protein, a functional marker of neuronal activation.Results: Compared to intragastric saline, intragastric dashi administration produced enhanced Fos expression in four forebrain regions: the medial preoptic area, subfornical organ, habenular nucleus, and central nucleus of the amygdala. Interestingly, the medial preoptic area was found to be the only feeding-related hypothalamic area responsive to dashi administration. Moreover, dashi had no effect in the nucleus accumbens and ventral tegmental area, two connected sites known to be activated by highly palatable sugars and fats. In the hindbrain, dashi administration produced enhanced Fos expression in both visceral sensory (caudal nucleus of the solitary tract, dorsal part of the lateral parabrachial nucleus, and area postrema) and autonomic (rostral ventrolateral medulla, and caudal ventrolateral medulla) sites.Discussion: The results demonstrate the activation of discrete forebrain and hindbrain regions following intragastric loads of dried bonito dashi. Our data suggest that the gut-brain axis is the principal mediator of the postingestive effects associated with the ingestion of dashi.


Asunto(s)
Eje Cerebro-Intestino/fisiología , Encéfalo/fisiología , Productos Pesqueros , Proteínas Proto-Oncogénicas c-fos/análisis , Atún , Animales , Química Encefálica , Alimentos en Conserva , Expresión Génica , Masculino , Prosencéfalo/fisiología , Proteínas Proto-Oncogénicas c-fos/genética , Ratas , Ratas Sprague-Dawley , Rombencéfalo/fisiología , Soluciones/administración & dosificación
6.
Mol Cell ; 52(6): 794-804, 2013 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-24268578

RESUMEN

Autophagy is a cellular self-catabolic process wherein organelles, macromolecules, and invading microbes are sequestered in autophagosomes that fuse with lysosomes. In this study, we uncover the role of nitric oxide (NO) as a signaling molecule for autophagy induction via its downstream mediator, 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP). We found that 8-nitro-cGMP-induced autophagy is mediated by Lys63-linked polyubiquitination and that endogenous 8-nitro-cGMP promotes autophagic exclusion of invading group A Streptococcus (GAS) from cells. 8-nitro-cGMP can modify Cys residues by S-guanylation of proteins. We showed that intracellular GAS is modified with S-guanylation extensively in autophagosomes-like vacuoles, suggesting the role of S-guanylation as a marker for selective autophagic degradation. This finding is supported by the fact that S-guanylated bacteria were selectively marked with polyubiquitin, a known molecular tag for selective transport to autophagosomes. These results collectively indicate that 8-nitro-cGMP plays a crucial role in cytoprotection during bacterial infections or inflammations via autophagy upregulation.


Asunto(s)
Autofagia , GMP Cíclico/análogos & derivados , Inmunidad Innata , Macrófagos/metabolismo , Streptococcus pyogenes/metabolismo , Animales , Proteína 5 Relacionada con la Autofagia , Proteínas Bacterianas/metabolismo , GMP Cíclico/metabolismo , Células HeLa , Humanos , Interferón gamma/farmacología , Lipopolisacáridos/farmacología , Proteínas Luminiscentes/biosíntesis , Proteínas Luminiscentes/genética , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Óxido Nítrico/metabolismo , Poliubiquitina/metabolismo , Transporte de Proteínas , Transducción de Señal , Streptococcus pyogenes/inmunología , Streptococcus pyogenes/patogenicidad , Factores de Tiempo , Transfección , Ubiquitinación
7.
Sleep Breath ; 25(1): 199-206, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32385731

RESUMEN

PURPOSE: Poor sleep quality has been reported to be a risk factor for cardiovascular disease, diabetes, and metabolic syndrome, as well as mental disorders including depression and anxiety. However, few studies have investigated the association between sleep quality and diet in young males. We aimed to assess this association, adjusting for psychological factors. METHODS: In this study, a total of 124 male Japanese students were analyzed. Sleep quality, diet, and psychological symptoms were assessed using self-reported questionnaires, including the Pittsburgh Sleep Quality Index (PSQI), brief-type self-administered diet history questionnaire (BDHQ), 12-item General Health Questionnaire (GHQ12), and State-Trait Anxiety Inventory (STAI) A-Trait scale. RESULTS: Among participants, 40% exhibited a PSQI total score ≥ 6, indicating poor sleep quality. Poor sleep quality was associated with poor mental health status and higher levels of anxiety. After adjusting for covariates including these psychological factors, poor sleep quality was significantly associated with low intakes of fat, beta-carotene, retinol, alpha-tocopherol, vitamin K, vitamin B1, daidzein, genistein, and iron. Poor sleep quality was also associated with low intake of pulses, fat and oil, as well as high intakes of sugar-sweetened beverages. CONCLUSIONS: Our findings demonstrated that sleep quality among young Japanese males was associated with specific dietary features, independently of psychological status, which may help to elucidate the mechanisms underlying the link between sleep and sleep-related diseases.


Asunto(s)
Dieta/estadística & datos numéricos , Trastornos del Sueño-Vigilia/epidemiología , Adulto , Ansiedad/epidemiología , Comorbilidad , Humanos , Japón/epidemiología , Masculino , Adulto Joven
8.
J Biol Chem ; 294(37): 13781-13788, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31350340

RESUMEN

Eukaryotes typically utilize two distinct aminoacyl-tRNA synthetase isoforms, one for cytosolic and one for mitochondrial protein synthesis. However, the genome of budding yeast (Saccharomyces cerevisiae) contains only one cysteinyl-tRNA synthetase gene (YNL247W, also known as CRS1). In this study, we report that CRS1 encodes both cytosolic and mitochondrial isoforms. The 5' complementary DNA end method and GFP reporter gene analyses indicated that yeast CRS1 expression yields two classes of mRNAs through alternative transcription starts: a long mRNA containing a mitochondrial targeting sequence and a short mRNA lacking this targeting sequence. We found that the mitochondrial Crs1 is the product of translation from the first initiation AUG codon on the long mRNA, whereas the cytosolic Crs1 is produced from the second in-frame AUG codon on the short mRNA. Genetic analysis and a ChIP assay revealed that the transcription factor heme activator protein (Hap) complex, which is involved in mitochondrial biogenesis, determines the transcription start sites of the CRS1 gene. We also noted that Hap complex-dependent initiation is regulated according to the needs of mitochondrial energy production. The results of our study indicate energy-dependent initiation of alternative transcription of CRS1 that results in production of two Crs1 isoforms, a finding that suggests Crs1's potential involvement in mitochondrial energy metabolism in yeast.


Asunto(s)
Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Transcripción Genética/genética , Secuencia de Aminoácidos , Secuencia de Bases , Codón/metabolismo , Codón Iniciador/metabolismo , Citoplasma/metabolismo , Citosol/metabolismo , ADN Complementario/metabolismo , Metabolismo Energético , Mitocondrias/genética , Mitocondrias/metabolismo , Biosíntesis de Proteínas , Isoformas de Proteínas/metabolismo , ARN Mensajero/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
Angew Chem Int Ed Engl ; 58(45): 16067-16070, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31479578

RESUMEN

Thionitrous acid (HSNO), the smallest S-nitrosothiol, is emerging as a potential key intermediate in cellular redox regulation linking two signaling molecules H2 S and NO. However, the chemical biology of HSNO remains poorly understood. A major hurdle is the lack of methods for selective detection of HSNO in biological systems. Herein, we report the rational design, synthesis, and evaluation of the first fluorescent probe TAP-1 for HSNO detection. TAP-1 showed high selectivity and sensitivity to HSNO in aqueous media and cells, providing a useful tool for understanding the functions of HSNO in biology.


Asunto(s)
Colorantes Fluorescentes/metabolismo , Sulfuro de Hidrógeno/química , Óxido Nítrico/química , S-Nitrosotioles/análisis , S-Nitrosotioles/metabolismo , Colorantes Fluorescentes/química , Células HeLa , Humanos , Estructura Molecular , Oxidación-Reducción
10.
Chem Res Toxicol ; 30(9): 1673-1684, 2017 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-28837763

RESUMEN

Electrophiles such as methylmercury (MeHg) affect cellular functions by covalent modification with endogenous thiols. Reactive persulfide species were recently reported to mediate antioxidant responses and redox signaling because of their strong nucleophilicity. In this study, we used MeHg as an environmental electrophile and found that exposure of cells to the exogenous electrophile elevated intracellular concentrations of the endogenous electrophilic molecule 8-nitroguanosine 3',5'-cyclic monophosphate (8-nitro-cGMP), accompanied by depletion of reactive persulfide species and 8-SH-cGMP which is a metabolite of 8-nitro-cGMP. Exposure to MeHg also induced S-guanylation and activation of H-Ras followed by injury to cerebellar granule neurons. The electrophile-induced activation of redox signaling and the consequent cell damage were attenuated by pretreatment with a reactive persulfide species donor. In conclusion, exogenous electrophiles such as MeHg with strong electrophilicity impair the redox signaling regulatory mechanism, particularly of intracellular reactive persulfide species and therefore lead to cellular pathogenesis. Our results suggest that reactive persulfide species may be potential therapeutic targets for attenuating cell injury by electrophiles.


Asunto(s)
Compuestos de Metilmercurio/química , Sulfuros/química , Animales , Anticuerpos/inmunología , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , GMP Cíclico/análogos & derivados , GMP Cíclico/química , GMP Cíclico/inmunología , GMP Cíclico/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Inmunohistoquímica , Masculino , Compuestos de Metilmercurio/análisis , Compuestos de Metilmercurio/toxicidad , Microscopía Fluorescente , Naftoquinonas/química , Naftoquinonas/toxicidad , Óxido Nítrico/análisis , Oxidación-Reducción , Células PC12 , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/análisis , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Espectrometría de Masa por Ionización de Electrospray , Sulfuros/farmacología , Proteínas ras/genética , Proteínas ras/metabolismo
11.
Proc Natl Acad Sci U S A ; 111(21): 7606-11, 2014 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-24733942

RESUMEN

Using methodology developed herein, it is found that reactive persulfides and polysulfides are formed endogenously from both small molecule species and proteins in high amounts in mammalian cells and tissues. These reactive sulfur species were biosynthesized by two major sulfurtransferases: cystathionine ß-synthase and cystathionine γ-lyase. Quantitation of these species indicates that high concentrations of glutathione persulfide (perhydropersulfide >100 µM) and other cysteine persulfide and polysulfide derivatives in peptides/proteins were endogenously produced and maintained in the plasma, cells, and tissues of mammals (rodent and human). It is expected that persulfides are especially nucleophilic and reducing. This view was found to be the case, because they quickly react with H2O2 and a recently described biologically generated electrophile 8-nitroguanosine 3',5'-cyclic monophosphate. These results indicate that persulfides are potentially important signaling/effector species, and because H2S can be generated from persulfide degradation, much of the reported biological activity associated with H2S may actually be that of persulfides. That is, H2S may act primarily as a marker for the biologically active of persulfide species.


Asunto(s)
Cisteína/análogos & derivados , Disulfuros/metabolismo , Estrés Oxidativo/fisiología , Transducción de Señal/fisiología , Compuestos de Sulfhidrilo/metabolismo , Animales , Cromatografía Liquida , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Cistationina betasintasa/metabolismo , Cistationina gamma-Liasa/metabolismo , Cisteína/biosíntesis , Cisteína/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Ratones , Oxidación-Reducción , Espectrometría de Masas en Tándem
12.
Biochem Biophys Res Commun ; 480(2): 180-186, 2016 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-27742479

RESUMEN

Reactive persulfide species such as glutathione persulfide (GSSH) are highly abundant biomolecules. Persulfide dioxygenase (also called ethylmalonic encephalopathy protein 1, ETHE1) reportedly metabolizes GSSH to GSH with simultaneous oxygen consumption. How ETHE1 activity is regulated is still unclear, however. In this study, we describe the possible role of protein polysulfidation in the catalytic activity of ETHE1. We first found that ETHE1 catalyzed the persulfide dioxygenase reaction mostly for glutathione polysulfides, GS-(S)n-H, as well as for GSSH, but not for other endogenous persulfides such as cysteine and homocysteine persulfides/polysulfides. We then developed a novel method to detect protein polysulfidation and named it the polyethylene glycol-conjugated maleimide-labeling gel shift assay (PMSA). PMSA analysis indicated that most cysteine residues in ETHE1 were polysulfidated. Site-directed mutagenesis of cysteine residues in ETHE1 combined with liquid chromatography tandem mass spectrometry for polysulfidation determination surprisingly indicated that the Cys247 residue was important for polysulfidation of other Cys residues and that the C247S mutant possessed no persulfide dioxygenase activity. These results suggested that ETHE1 is a major enzyme regulating endogenous GSSH/GS-(S)n-H and that its activity is controlled by polysulfidation of the Cys247 residue.


Asunto(s)
Proteínas Mitocondriales/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas/metabolismo , Células A549 , Cisteína/química , Dioxigenasas/genética , Dioxigenasas/metabolismo , Disulfuros/metabolismo , Glutatión/análogos & derivados , Glutatión/metabolismo , Humanos , Proteínas Mitocondriales/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas/química , Especificidad por Sustrato , Sulfuros/metabolismo
13.
Molecules ; 21(12)2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27983699

RESUMEN

For decades, reactive persulfide species including cysteine persulfide (CysSSH) have been known to exist endogenously in organisms. However, the physiological significance of endogenous persulfides remains poorly understood. That cystathionine ß-synthase and cystathionine γ-lyase produced CysSSH from cystine was recently demonstrated. An endogenous sulfur transfer system involving CysSSH evidently generates glutathione persulfide (GSSH) that exists at concentrations greater than 100 µM in vivo. Because reactive persulfide species such as CysSSH and GSSH have higher nucleophilicity than parental cysteine (Cys) and glutathione do, these reactive species exhibit strong scavenging activities against oxidants, e.g., hydrogen peroxide, and electrophiles, which contributes to redox signaling regulation. Also, several papers indicated that various proteins and enzymes have Cys polysulfides including CysSSH at their specific Cys residues, which is called protein polysulfidation. Apart from the redox signaling regulatory mechanism, another plausible function of protein polysulfidation is providing protection for protein thiol residues against irreversible chemical modification caused by oxidants and electrophiles. Elucidation of the redox signaling regulatory mechanism of reactive persulfide species including small thiol molecules and thiol-containing proteins should lead to the development of new therapeutic strategies and drug discoveries for oxidative and electrophilic stress-related diseases.


Asunto(s)
Cistationina betasintasa/metabolismo , Cistationina gamma-Liasa/metabolismo , Cisteína/análogos & derivados , Disulfuros/química , Disulfuros/metabolismo , Glutatión/análogos & derivados , Peróxido de Hidrógeno/química , Superóxidos/química , Cisteína/química , Glutatión/metabolismo , Humanos , Oxidación-Reducción/efectos de los fármacos , Transducción de Señal
14.
Angew Chem Int Ed Engl ; 54(47): 13961-5, 2015 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-26381762

RESUMEN

Endogenous hydrogen polysulfides (H2Sn; n>1) have been recognized as important regulators in sulfur-related redox biology. H2Sn can activate tumor suppressors, ion channels, and transcription factors with higher potency than H2S. Although H2Sn are drawing increasing attention, their exact mechanisms of action are still poorly understood. A major hurdle in this field is the lack of reliable and convenient methods for H2Sn detection. Herein we report a H2Sn-mediated benzodithiolone formation under mild conditions. This method takes advantage of the unique dual reactivity of H2Sn as both a nucleophile and an electrophile. Based on this reaction, three fluorescent probes (PSP-1, PSP-2, and PSP-3) were synthesized and evaluated. Among the probes prepared, PSP-3 showed a desirable off/on fluorescence response to H2Sn and high specificity. The probe was successfully applied in visualizing intracellular H2Sn.


Asunto(s)
Colorantes Fluorescentes/síntesis química , Hidrógeno/análisis , Sulfuros/análisis , Animales , Línea Celular , Chlorocebus aethiops , Fluorescencia , Colorantes Fluorescentes/análisis , Colorantes Fluorescentes/química , Células HeLa , Humanos , Ratones , Estructura Molecular , Células Vero
15.
Biosci Biotechnol Biochem ; 78(5): 843-50, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25035988

RESUMEN

Chronic hyperglycemia has deleterious effects on pancreatic ß-cell function, a process known as glucotoxicity. This study examined whether chronic high glucose (CHG) induces cellular hypoxia in rat INS-1 ß cells, and whether hyperoxia (35% O2) can reverse glucotoxicity-induced inhibition of insulin secretion. CHG (33.3 mm, 96 h) reduced insulin secretion, and down-regulated insulin and pancreatic duodenal homeobox factor 1 gene expression. CHG also increased intracellular pimonidazole-protein adducts, a marker for hypoxia. CHG also enhanced hypoxia-inducible factor 1α (HIF-1α) protein expression and its DNA-binding activity, which was accompanied by a decrease in mRNA expression of glucose transporter 2 (GLUT2), glucokinase and uncoupling protein-2 and an increase in mRNA expression of GLUT1 and pyruvate dehydrogenase kinase 1. Hyperoxia restored the decrease in insulin secretion and the gene expression except for GLUT2, and suppressed intracellular hypoxia and HIF-1α activation. These results suggest that glucotoxicity may cause ß-cell hypoxia. Hyperoxia might prevent glucotoxicity-induced ß-cell dysfunction and improve insulin secretion.


Asunto(s)
Glucosa/efectos adversos , Células Secretoras de Insulina/efectos de los fármacos , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Oxígeno/metabolismo , Proteínas Quinasas Dependientes de 3-Fosfoinosítido/genética , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Proteínas de Drosophila/genética , Regulación de la Expresión Génica/efectos de los fármacos , Glucoquinasa/genética , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 2/genética , Proteínas de Homeodominio/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Secreción de Insulina , Canales Iónicos/genética , Proteínas Mitocondriales/genética , Nitroimidazoles/farmacología , Ratas , Transactivadores/genética , Proteína Desacopladora 2
16.
Nat Commun ; 15(1): 2453, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503758

RESUMEN

Reactive sulfane sulfur species such as persulfides (RSSH) and H2S2 are important redox regulators and closely linked to H2S signaling. However, the study of these species is still challenging due to their instability, high reactivity, and the lack of suitable donors to produce them. Herein we report a unique compound, 2H-thiopyran-2-thione sulfine (TTS), which can specifically convert H2S to HSOH, and then to H2S2 in the presence of excess H2S. Meanwhile, the reaction product 2H-thiopyran-2-thione (TT) can be oxidized to reform TTS by biological oxidants. The reaction mechanism of TTS is studied experimentally and computationally. TTS can be conjugated to proteins to achieve specific delivery, and the combination of TTS and H2S leads to highly efficient protein persulfidation. When TTS is applied in conjunction with established H2S donors, the corresponding donors of H2S2 (or its equivalents) are obtained. Cell-based studies reveal that TTS can effectively increase intracellular sulfane sulfur levels and compensate for certain aspects of sulfide:quinone oxidoreductase (SQR) deficiency. These properties make TTS a conceptually new strategy for the design of donors of reactive sulfane sulfur species.


Asunto(s)
Sulfuro de Hidrógeno , Piranos , Compuestos de Sulfhidrilo , Sulfuro de Hidrógeno/metabolismo , Tionas , Sulfuros/metabolismo , Azufre/metabolismo , Oxidación-Reducción , Proteínas/metabolismo
17.
Redox Biol ; 69: 103018, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38199039

RESUMEN

Supersulfides, which are defined as sulfur species with catenated sulfur atoms, are increasingly being investigated in biology. We recently identified pyridoxal phosphate (PLP)-dependent biosynthesis of cysteine persulfide (CysSSH) and related supersulfides by cysteinyl-tRNA synthetase (CARS). Here, we investigated the physiological role of CysSSH in budding yeast (Saccharomyces cerevisiae) by generating a PLP-binding site mutation K109A in CRS1 (the yeast ortholog of CARS), which decreased the synthesis of CysSSH and related supersulfides and also led to reduced chronological aging, effects that were associated with an increased endoplasmic reticulum stress response and impaired mitochondrial bioenergetics. Reduced chronological aging in the K109A mutant could be rescued by using exogenous supersulfide donors. Our findings indicate important roles for CARS in the production and metabolism of supersulfides-to mediate mitochondrial function and to regulate longevity.


Asunto(s)
Longevidad , Proteínas de Saccharomyces cerevisiae , Mitocondrias/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Azufre/metabolismo
18.
Biosci Biotechnol Biochem ; 77(5): 1080-5, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23649272

RESUMEN

Eikenella corrodens produces autoinducer-2 (AI-2) in the mid log phase, and AI-2 activity decreases dramatically during the stationary phase. We investigated the mechanism underlying this decrease in AI-2 activity. To analyze the mechanism, we extracted and purified AI-2 from the supernatant of mid-log-phase culture. Simultaneously, the stationary-phase culture supernatant was fractionated by ammonium sulfate precipitation. On incubating purified AI-2 and 4-hydroxy-5-methyl-3(2H)-furanone (MHF) with each fraction, the 30% fraction decreased both AI-2 and MHF activities. The data suggest that AI-2 and MHF were rendered inactive in the same manner. Heat and/or trypsin treatment of the 30% fraction did not completely arrest AI-2 inactivation, suggesting that partially heat-stable proteins are involved in AI-2 inactivation. We observed that an enzyme converted MHF to another form. This suggests that E. corrodens produces an AI-2 inactivating enzyme, and that AI-2 can be degraded or modified by it.


Asunto(s)
Eikenella corrodens/enzimología , Homoserina/análogos & derivados , Lactonas/metabolismo , Medios de Cultivo Condicionados/metabolismo , Eikenella corrodens/crecimiento & desarrollo , Eikenella corrodens/metabolismo , Furanos/metabolismo , Homoserina/metabolismo , Calor , Tripsina/metabolismo
19.
Antioxid Redox Signal ; 39(13-15): 983-999, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37565274

RESUMEN

Significance: Persulfides/polysulfides are sulfur-catenated molecular species (i.e., R-Sn-R', n > 2; R-Sn-H, n > 1, with R = cysteine, glutathione, and proteins), such as cysteine persulfide (CysSSH). These species are abundantly formed as endogenous metabolites in mammalian and human cells and tissues. However, the persulfide synthesis mechanism has yet to be thoroughly discussed. Recent Advances: We used ß-(4-hydroxyphenyl)ethyl iodoacetamide and mass spectrometry to develop sulfur metabolomics, a highly precise, quantitative analytical method for sulfur metabolites. Critical Issues: With this method, we detected appreciable amounts of different persulfide species in biological specimens from various organisms, from the domains Bacteria, Archaea, and Eukarya. By using our rigorously quantitative approach, we identified cysteinyl-tRNA synthetase (CARS) as a novel persulfide synthase, and we found that the CysSSH synthase activity of CARS is highly conserved from the domains Bacteria to Eukarya. Because persulfide synthesis is found not only with CARS but also with other sulfotransferase enzymes in many organisms, persulfides/polysulfides are expected to contribute as fundamental elements to substantially diverse biological phenomena. In fact, persulfide generation in higher organisms-that is, plants and animals-demonstrated various physiological functions that are mediated by redox signaling, such as regulation of energy metabolism, infection, inflammation, and cell death, including ferroptosis. Future Directions: Investigating CARS-dependent persulfide production may clarify various pathways of redox signaling in physiological and pathophysiological conditions and may thereby promote the development of preventive and therapeutic measures for oxidative stress as well as different inflammatory, metabolic, and neurodegenerative diseases. Antioxid. Redox Signal. 39, 983-999.


Asunto(s)
Cisteína , Sulfuros , Animales , Humanos , Sulfuros/metabolismo , Oxidación-Reducción , Cisteína/metabolismo , Azufre/metabolismo , Mamíferos/metabolismo
20.
Sci Adv ; 9(33): eadg8631, 2023 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-37595031

RESUMEN

Abundant formation of endogenous supersulfides, which include reactive persulfide species and sulfur catenated residues in thiols and proteins (supersulfidation), has been observed. We found here that supersulfides catalyze S-nitrosoglutathione (GSNO) metabolism via glutathione-dependent electron transfer from aldehydes by exploiting alcohol dehydrogenase 5 (ADH5). ADH5 is a highly conserved bifunctional enzyme serving as GSNO reductase (GSNOR) that down-regulates NO signaling and formaldehyde dehydrogenase (FDH) that detoxifies formaldehyde in the form of glutathione hemithioacetal. C174S mutation significantly reduced the supersulfidation of ADH5 and almost abolished GSNOR activity but spared FDH activity. Notably, Adh5C174S/C174S mice manifested improved cardiac functions possibly because of GSNOR elimination and consequent increased NO bioavailability. Therefore, we successfully separated dual functions (GSNOR and FDH) of ADH5 (mediated by the supersulfide catalysis) through the biochemical analysis for supersulfides in vitro and characterizing in vivo phenotypes of the GSNOR-deficient organisms that we established herein. Supersulfides in ADH5 thus constitute a substantial catalytic center for GSNO metabolism mediating electron transfer from aldehydes.


Asunto(s)
Aldehídos , Óxido Nítrico , Animales , Ratones , Transporte de Electrón , Catálisis , Glutatión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA