Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 117(10): 891-904, 2015 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-26333362

RESUMEN

RATIONALE: In Drosophila, the Hippo signaling pathway negatively regulates organ size by suppressing cell proliferation and survival through the inhibition of Yorkie, a transcriptional cofactor. Yes-associated protein (YAP), the mammalian homolog of Yorkie, promotes cardiomyocyte growth and survival in postnatal hearts. However, the underlying mechanism responsible for the beneficial effect of YAP in cardiomyocytes remains unclear. OBJECTIVES: We investigated whether miR-206, a microRNA known to promote hypertrophy in skeletal muscle, mediates the effect of YAP on promotion of survival and hypertrophy in cardiomyocytes. METHODS AND RESULTS: Microarray analysis indicated that YAP increased miR-206 expression in cardiomyocytes. Increased miR-206 expression induced cardiac hypertrophy and inhibited cell death in cultured cardiomyocytes, similar to that of YAP. Downregulation of endogenous miR-206 in cardiomyocytes attenuated YAP-induced cardiac hypertrophy and survival, suggesting that miR-206 plays a critical role in mediating YAP function. Cardiac-specific overexpression of miR-206 in mice induced hypertrophy and protected the heart from ischemia/reperfusion injury, whereas suppression of miR-206 exacerbated ischemia/reperfusion injury and prevented pressure overload-induced cardiac hypertrophy. miR-206 negatively regulates Forkhead box protein P1 expression in cardiomyocytes and overexpression of Forkhead box protein P1 attenuated miR-206-induced cardiac hypertrophy and survival, suggesting that Forkhead box protein P1 is a functional target of miR-206. CONCLUSIONS: YAP increases the abundance of miR-206, which in turn plays an essential role in mediating hypertrophy and survival by silencing Forkhead box protein P1 in cardiomyocytes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Cardiomegalia/metabolismo , MicroARNs/metabolismo , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Animales Recién Nacidos , Proteínas Reguladoras de la Apoptosis/genética , Cardiomegalia/genética , Cardiomegalia/patología , Proteínas de Ciclo Celular , Supervivencia Celular , Células Cultivadas , Modelos Animales de Enfermedad , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Ratones Transgénicos , MicroARNs/genética , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Infarto del Miocardio/prevención & control , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/patología , Estrés Oxidativo , Fosfoproteínas/genética , Interferencia de ARN , Ratas Wistar , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Transfección , Remodelación Ventricular , Proteínas Señalizadoras YAP
2.
Nihon Rinsho ; 74 Suppl 6: 246-50, 2016 08.
Artículo en Japonés | MEDLINE | ID: mdl-30540421
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA