Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(13): 2802-2822.e22, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37220746

RESUMEN

Systemic candidiasis is a common, high-mortality, nosocomial fungal infection. Unexpectedly, it has emerged as a complication of anti-complement C5-targeted monoclonal antibody treatment, indicating a critical niche for C5 in antifungal immunity. We identified transcription of complement system genes as the top biological pathway induced in candidemic patients and as predictive of candidemia. Mechanistically, C5a-C5aR1 promoted fungal clearance and host survival in a mouse model of systemic candidiasis by stimulating phagocyte effector function and ERK- and AKT-dependent survival in infected tissues. C5ar1 ablation rewired macrophage metabolism downstream of mTOR, promoting their apoptosis and enhancing mortality through kidney injury. Besides hepatocyte-derived C5, local C5 produced intrinsically by phagocytes provided a key substrate for antifungal protection. Lower serum C5a concentrations or a C5 polymorphism that decreases leukocyte C5 expression correlated independently with poor patient outcomes. Thus, local, phagocyte-derived C5 production licenses phagocyte antimicrobial function and confers innate protection during systemic fungal infection.


Asunto(s)
Antifúngicos , Candidiasis , Animales , Ratones , Complemento C5/metabolismo , Fagocitos/metabolismo
2.
Immunity ; 57(1): 171-187.e14, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38198850

RESUMEN

Immune responses are tightly regulated yet highly variable between individuals. To investigate human population variation of trained immunity, we immunized healthy individuals with Bacillus Calmette-Guérin (BCG). This live-attenuated vaccine induces not only an adaptive immune response against tuberculosis but also triggers innate immune activation and memory that are indicative of trained immunity. We established personal immune profiles and chromatin accessibility maps over a 90-day time course of BCG vaccination in 323 individuals. Our analysis uncovered genetic and epigenetic predictors of baseline immunity and immune response. BCG vaccination enhanced the innate immune response specifically in individuals with a dormant immune state at baseline, rather than providing a general boost of innate immunity. This study advances our understanding of BCG's heterologous immune-stimulatory effects and trained immunity in humans. Furthermore, it highlights the value of epigenetic cell states for connecting immune function with genotype and the environment.


Asunto(s)
Vacuna BCG , Inmunidad Entrenada , Humanos , Multiómica , Vacunación , Epigénesis Genética
3.
Am J Hum Genet ; 109(3): 471-485, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35167808

RESUMEN

Humans exhibit remarkable interindividual and interpopulation immune response variability upon microbial challenges. Cytokines play a vital role in regulating inflammation and immune responses, but dysregulation of cytokine responses has been implicated in different disease states. Host genetic factors were previously shown to significantly impact cytokine response heterogeneity mainly in European-based studies, but it is unclear whether these findings are transferable to non-European individuals. Here, we aimed to identify genetic variants modulating cytokine responses in healthy adults of East African ancestry from Tanzania. We leveraged both cytokine and genetic data and performed genome-wide cytokine quantitative trait loci (cQTLs) mapping. The results were compared with another cohort of healthy adults of Western European ancestry via direct overlap and functional enrichment analyses. We also performed meta-analyses to identify cQTLs with congruent effect direction in both populations. In the Tanzanians, cQTL mapping identified 80 independent suggestive loci and one genome-wide significant locus (TBC1D22A) at chromosome 22; SNP rs12169244 was associated with IL-1b release after Salmonella enteritidis stimulation. Remarkably, the identified cQTLs varied significantly when compared to the European cohort, and there was a very limited percentage of overlap (1.6% to 1.9%). We further observed ancestry-specific pathways regulating induced cytokine responses, and there was significant enrichment of the interferon pathway specifically in the Tanzanians. Furthermore, contrary to the Europeans, genetic variants in the TLR10-TLR1-TLR6 locus showed no effect on cytokine response. Our data reveal both ancestry-specific effects of genetic variants and pathways on cytokine response heterogeneity, hence arguing for the importance of initiatives to include diverse populations into genomics research.


Asunto(s)
Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Adulto , Citocinas/genética , Predisposición Genética a la Enfermedad , Genómica , Humanos , Polimorfismo de Nucleótido Simple/genética , Tanzanía
4.
Brief Bioinform ; 23(5)2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35901513

RESUMEN

Genetic association studies have been very successful at elucidating the genetic background of many complex diseases/traits. However, the X-chromosome is often neglected in these studies because of technical difficulties and the fact that most tools only utilize genetic data from autosomes. In this review, we aim to provide an overview of different practical approaches that are followed to incorporate the X-chromosome in association analysis, such as Genome-Wide Association Studies and Expression Quantitative Trait Loci Analysis. In general, the choice of which test statistics is most appropriate will depend on three main criteria: (1) the underlying X-inactivation model, (2) if Hardy-Weinberg equilibrium holds and sex-specific allele frequencies are expected and (3) whether adjustment for confounding variables is required. All in all, it is recommended that a combination of different association tests should be used for the analysis of X-chromosome.


Asunto(s)
Cromosomas Humanos X , Estudio de Asociación del Genoma Completo , Cromosomas Humanos X/genética , Femenino , Frecuencia de los Genes , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Inactivación del Cromosoma X
5.
Eur J Immunol ; 52(3): 431-446, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34821391

RESUMEN

Innate immune cells are able to build memory characteristics via a process termed "trained immunity." Host factors that influence the magnitude of the individual trained immunity response remain largely unknown. Using an integrative genomics approach, our study aimed to prioritize and understand the role of specific genes in trained immunity responses. In vitro-induced trained immunity responses were assessed in two independent population-based cohorts of healthy individuals, the 300 Bacillus Calmette-Guérin (300BCG; n = 267) and 200 Functional Genomics (200FG; n = 110) cohorts from the Human Functional Genomics Project. Genetic loci that influence cytokine responses upon trained immunity were identified by conducting a meta-analysis of QTLs identified in the 300BCG and 200FG cohorts. From the identified QTL loci, we functionally validated the role of PI3K-Akt signaling pathway and two genes that belong to the family of Siglec receptors (Siglec-5 and Siglec-14). Furthermore, we identified the H3K9 histone demethylases of the KDM4 family as major regulators of trained immunity responses. These data pinpoint an important role of metabolic and epigenetic processes in the regulation of trained immunity responses, and these findings may open new avenues for vaccine design and therapeutic interventions.


Asunto(s)
Vacuna BCG , Inmunidad Innata , Genómica , Humanos , Fosfatidilinositol 3-Quinasas/genética , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico
6.
Osteoarthritis Cartilage ; 31(8): 1022-1034, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37105395

RESUMEN

OBJECTIVE: Basic calcium phosphate (BCP) crystals can activate the NLRP3 inflammasome and are potentially involved in the pathogenesis of osteoarthritis (OA). In order to elucidate relevant inflammatory mechanisms in OA, we used a functional genomics approach to assess genetic variation influencing BCP crystal-induced cytokine production. METHOD: Peripheral blood mononuclear cells (PBMCs) were isolated from healthy volunteers who were previously genotyped and stimulated with BCP crystals and/or lipopolysaccharide (LPS) after which cytokines release was assessed. Cytokine quantitative trait locus (cQTL) mapping was performed. For in vitro validation of the cQTL located in anoctamin 3 (ANO3), PBMCs were incubated with Tamoxifen and Benzbromarone prior to stimulation. Additionally, we performed co-localisation analysis of our top cQTLs with the most recent OA meta-analysis of genome-wide association studies (GWAS). RESULTS: We observed that BCP crystals and LPS synergistically induce IL-1ß in human PBMCs. cQTL analysis revealed several suggestive loci influencing cytokine release upon stimulation, among which are quantitative trait locus annotated to ANO3 and GLIS3. As functional validation, anoctamin inhibitors reduced IL-1ß release in PBMCs after stimulation. Co-localisation analysis showed that the GLIS3 locus was shared between LPS/BCP crystal-induced IL-1ß and genetic association with Knee OA. CONCLUSIONS: We identified and functionally validated a new locus, ANO3, associated with LPS/BCP crystal-induced inflammation in PBMCs. Moreover, the cQTL in the GLIS3 locus co-localises with the previously found locus associated with Knee OA, suggesting that this Knee OA locus might be explained through an inflammatory mechanism. These results form a basis for further exploration of inflammatory mechanisms in OA.


Asunto(s)
Osteoartritis de la Rodilla , Sitios de Carácter Cuantitativo , Humanos , Receptor Toll-Like 4/genética , Leucocitos Mononucleares , Estudio de Asociación del Genoma Completo , Lipopolisacáridos , Fosfatos de Calcio/farmacología , Inflamación/genética , Genómica , Anoctaminas
7.
PLoS Pathog ; 16(4): e1008408, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32251450

RESUMEN

Candida bloodstream infection, i.e. candidemia, is the most frequently encountered life-threatening fungal infection worldwide, with mortality rates up to almost 50%. In the majority of candidemia cases, Candida albicans is responsible. Worryingly, a global increase in the number of patients who are susceptible to infection (e.g. immunocompromised patients), has led to a rise in the incidence of candidemia in the last few decades. Therefore, a better understanding of the anti-Candida host response is essential to overcome this poor prognosis and to lower disease incidence. Here, we integrated genome-wide association studies with bulk and single-cell transcriptomic analyses of immune cells stimulated with Candida albicans to further our understanding of the anti-Candida host response. We show that differential expression analysis upon Candida stimulation in single-cell expression data can reveal the important cell types involved in the host response against Candida. This confirmed the known major role of monocytes, but more interestingly, also uncovered an important role for NK cells. Moreover, combining the power of bulk RNA-seq with the high resolution of single-cell RNA-seq data led to the identification of 27 Candida-response QTLs and revealed the cell types potentially involved herein. Integration of these response QTLs with a GWAS on candidemia susceptibility uncovered a potential new role for LY86 in candidemia susceptibility. Finally, experimental follow-up confirmed that LY86 knockdown results in reduced monocyte migration towards the chemokine MCP-1, thereby implying that this reduced migration may underlie the increased susceptibility to candidemia. Altogether, our integrative systems genetics approach identifies previously unknown mechanisms underlying the immune response to Candida infection.


Asunto(s)
Antígenos de Superficie/genética , Antígenos de Superficie/inmunología , Candida albicans/fisiología , Candidiasis/genética , Candida albicans/inmunología , Candidemia/genética , Candidemia/inmunología , Candidemia/microbiología , Candidiasis/inmunología , Candidiasis/microbiología , Estudios de Cohortes , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Células Asesinas Naturales , Análisis de Secuencia de ARN , Análisis de la Célula Individual
8.
J Infect Dis ; 223(8): 1322-1333, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33524124

RESUMEN

The clinical spectrum of COVID-19 varies and the differences in host response characterizing this variation have not been fully elucidated. COVID-19 disease severity correlates with an excessive proinflammatory immune response and profound lymphopenia. Inflammatory responses according to disease severity were explored by plasma cytokine measurements and proteomics analysis in 147 COVID-19 patients. Furthermore, peripheral blood mononuclear cell cytokine production assays and whole blood flow cytometry were performed. Results confirm a hyperinflammatory innate immune state, while highlighting hepatocyte growth factor and stem cell factor as potential biomarkers for disease severity. Clustering analysis revealed no specific inflammatory endotypes in COVID-19 patients. Functional assays revealed abrogated adaptive cytokine production (interferon-γ, interleukin-17, and interleukin-22) and prominent T-cell exhaustion in critically ill patients, whereas innate immune responses were intact or hyperresponsive. Collectively, this extensive analysis provides a comprehensive insight into the pathobiology of severe to critical COVID-19 and highlights potential biomarkers of disease severity.


Asunto(s)
Inmunidad Adaptativa/inmunología , COVID-19/inmunología , Inmunidad Innata/inmunología , Anciano , Biomarcadores/sangre , COVID-19/sangre , COVID-19/virología , Síndrome de Liberación de Citoquinas/sangre , Síndrome de Liberación de Citoquinas/inmunología , Síndrome de Liberación de Citoquinas/virología , Citocinas/inmunología , Femenino , Humanos , Inflamación/sangre , Inflamación/inmunología , Inflamación/virología , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/virología , Linfopenia/sangre , Linfopenia/inmunología , Linfopenia/virología , Masculino , Persona de Mediana Edad , SARS-CoV-2/inmunología , Índice de Severidad de la Enfermedad
9.
Infect Immun ; 89(8): e0000521, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34031131

RESUMEN

Infectious diseases are a leading cause of morbidity and mortality worldwide, and human pathogens have long been recognized as one of the main sources of evolutionary pressure, resulting in a high variable genetic background in immune-related genes. The study of the genetic contribution to infectious diseases has undergone tremendous advances over the last decades. Here, focusing on genetic predisposition to fungal diseases, we provide an overview of the available approaches for studying human genetic susceptibility to infections, reviewing current methodological and practical limitations. We describe how the classical methods available, such as family-based studies and candidate gene studies, have contributed to the discovery of crucial susceptibility factors for fungal infections. We will also discuss the contribution of novel unbiased approaches to the field, highlighting their success but also their limitations for the fungal immunology field. Finally, we show how a systems genomics approach can overcome those limitations and can lead to efficient prioritization and identification of genes and pathways with a critical role in susceptibility to fungal diseases. This knowledge will help to stratify at-risk patient groups and, subsequently, develop early appropriate prophylactic and treatment strategies.


Asunto(s)
Hongos/fisiología , Predisposición Genética a la Enfermedad , Interacciones Huésped-Patógeno/genética , Micosis/genética , Micosis/microbiología , Susceptibilidad a Enfermedades/inmunología , Antecedentes Genéticos , Genoma , Genómica/métodos , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad , Micosis/inmunología
10.
Cell Immunol ; 366: 104393, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34147841

RESUMEN

Sirtuin 1 (SIRT1) has been described to modify immune responses by modulation of gene transcription. As transcriptional reprogramming is the molecular substrate of trained immunity, a de facto innate immune memory, we investigated the role of SIRT1 in the induction of trained immunity. We identified various SIRT1 genetic single nucleotide polymorphisms affecting innate and adaptive cytokine production of human peripheral blood mononuclear cells (PBMCs) in response to various stimuli on the one hand, and in vitro induction of trained immunity on the other hand. Furthermore, inhibition of SIRT1 upregulated pro-inflammatory innate cytokine production upon stimulation of PBMCs. However, inhibition of SIRT1 in vitro had no effect on cytokine responses upon induction of trained immunity, while activation of SIRT1 mildly modified trained immunity responses. In conclusion, SIRT1 modifies innate cytokine production by PBMCs in response to various microbes, but has only a secondary role for BCG and ß-glucan-induced trained immunity responses.


Asunto(s)
Genotipo , Inflamación/inmunología , Leucocitos Mononucleares/inmunología , Mycobacterium bovis/inmunología , Sirtuina 1/metabolismo , Inmunidad Adaptativa , Células Cultivadas , Citocinas/metabolismo , Humanos , Inmunidad Innata , Inmunización , Memoria Inmunológica , Mediadores de Inflamación/metabolismo , Polimorfismo de Nucleótido Simple , Sirtuina 1/antagonistas & inhibidores , Sirtuina 1/genética , beta-Glucanos/inmunología
11.
J Immunol ; 202(11): 3256-3266, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31010852

RESUMEN

Tetraspanins are a family of proteins possessing four transmembrane domains that help in lateral organization of plasma membrane proteins. These proteins interact with each other as well as other receptors and signaling proteins, resulting in functional complexes called "tetraspanin microdomains." Tetraspanins, including CD82, play an essential role in the pathogenesis of fungal infections. Dectin-1, a receptor for the fungal cell wall carbohydrate ß-1,3-glucan, is vital to host defense against fungal infections. The current study identifies a novel association between tetraspanin CD82 and Dectin-1 on the plasma membrane of Candida albicans-containing phagosomes independent of phagocytic ability. Deletion of CD82 in mice resulted in diminished fungicidal activity, increased C. albicans viability within macrophages, and decreased cytokine production (TNF-α, IL-1ß) at both mRNA and protein level in macrophages. Additionally, CD82 organized Dectin-1 clustering in the phagocytic cup. Deletion of CD82 modulates Dectin-1 signaling, resulting in a reduction of Src and Syk phosphorylation and reactive oxygen species production. CD82 knockout mice were more susceptible to C. albicans as compared with wild-type mice. Furthermore, patient C. albicans-induced cytokine production was influenced by two human CD82 single nucleotide polymorphisms, whereas an additional CD82 single nucleotide polymorphism increased the risk for candidemia independent of cytokine production. Together, these data demonstrate that CD82 organizes the proper assembly of Dectin-1 signaling machinery in response to C. albicans.


Asunto(s)
Candida albicans/fisiología , Candidiasis/metabolismo , Membrana Celular/metabolismo , Proteína Kangai-1/metabolismo , Lectinas Tipo C/metabolismo , Macrófagos/inmunología , Fagosomas/metabolismo , Animales , Candidiasis/inmunología , Línea Celular , Predisposición Genética a la Enfermedad , Humanos , Inmunidad Celular , Interleucina-1beta/metabolismo , Proteína Kangai-1/genética , Lectinas Tipo C/genética , Microdominios de Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Polimorfismo de Nucleótido Simple , Transducción de Señal , Factor de Necrosis Tumoral alfa/metabolismo
12.
Immunology ; 159(3): 289-297, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31671203

RESUMEN

Toll-like receptor 10 (TLR10) is the only member of the human Toll-like receptor family with an inhibitory function on the induction of innate immune responses and inflammation. However, its role in the modulation of trained immunity (innate immune memory) is unknown. In the present study, we assessed whether TLR10 modulates the induction of trained immunity induced by ß-glucan or bacillus Calmette-Guérin (BCG). Interleukin 10 receptor antagonist production was increased upon activation of TLR10 ex vivo after BCG vaccination, and TLR10 protein expression on monocytes was increased after BCG vaccination, whereas anti-TLR10 antibodies did not significantly modulate ß-glucan or BCG-induced trained immunity in vitro. A known immunomodulatory TLR10 missense single-nucleotide polymorphism (rs11096957) influenced trained immunity responses by ß-glucan or BCG in vitro. However, the in vivo induction of trained immunity by BCG vaccination was not influenced by TLR10 polymorphisms. In conclusion, TLR10 has a limited, non-essential impact on the induction of trained immunity in humans.


Asunto(s)
Vacuna BCG/administración & dosificación , Inmunidad Innata/efectos de los fármacos , Leucocitos Mononucleares/efectos de los fármacos , Receptor Toll-Like 10/agonistas , Vacunación , Adolescente , Adulto , Anciano , Células Cultivadas , Femenino , Humanos , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Masculino , Persona de Mediana Edad , Mutación Missense , Ensayos Clínicos Controlados Aleatorios como Asunto , Transducción de Señal , Receptor Toll-Like 10/genética , Receptor Toll-Like 10/inmunología , Receptor Toll-Like 10/metabolismo , Regulación hacia Arriba , Adulto Joven
13.
J Infect Dis ; 219(10): 1662-1670, 2019 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-30541099

RESUMEN

BACKGROUND: Rewiring cellular metabolism is important for activation of immune cells during host defense against Mycobacterium tuberculosis. Glutamine has been implicated as an immunomodulatory nutrient, but its role in the response to M. tuberculosis is unknown. METHODS: We assessed expression of glutamine pathway genes in M. tuberculosis-infected macrophages and blood transcriptomic profiles of individuals with latent M. tuberculosis infection or tuberculosis. Subsequently, we studied the effect of blocking glutaminolysis on M. tuberculosis-induced cytokines. Finally, we examined whether polymorphisms in genes involved in the glutamine pathway influence M. tuberculosis-induced cytokines in a cohort of 500 individuals. RESULTS: Glutamine pathway genes were differentially expressed in infected macrophages and patients with tuberculosis. Human peripheral blood mononuclear cells stimulated with M. tuberculosis displayed decreased cytokine (ie, interleukin 1ß, interferon γ, and interleukin 17) responses when medium was devoid of glutamine. Specific inhibitors of the glutamine pathway led to decreased cytokine responses, especially T-cell cytokines (ie, interferon γ, interleukin 17, and interleukin 22). Finally, genetic polymorphisms in glutamine metabolism genes (including GLS2, SLC1A5, and SLC7A5) influenced ex vivo cytokine responses to M. tuberculosis, especially for T-cell cytokines. CONCLUSIONS: Cellular glutamine metabolism is implicated in effective host responses against M. tuberculosis. Targeting immunometabolism may represent new strategies for tuberculosis prevention and/or treatment.


Asunto(s)
Glutamina/metabolismo , Mycobacterium tuberculosis/fisiología , Tuberculosis/inmunología , Células Cultivadas , Citocinas/metabolismo , Perfilación de la Expresión Génica , Humanos , Tuberculosis Latente/inmunología , Tuberculosis Latente/metabolismo , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Macrófagos/metabolismo , Polimorfismo Genético , Tuberculosis/metabolismo
14.
J Infect Dis ; 220(5): 862-872, 2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31241743

RESUMEN

BACKGROUND: Candidemia, one of the most common causes of fungal bloodstream infection, leads to mortality rates up to 40% in affected patients. Understanding genetic mechanisms for differential susceptibility to candidemia may aid in designing host-directed therapies. METHODS: We performed the first genome-wide association study on candidemia, and we integrated these data with variants that affect cytokines in different cellular systems stimulated with Candida albicans. RESULTS: We observed strong association between candidemia and a variant, rs8028958, that significantly affects the expression levels of PLA2G4B in blood. We found that up to 35% of the susceptibility loci affect in vitro cytokine production in response to Candida. Furthermore, potential causal genes located within these loci are enriched for lipid and arachidonic acid metabolism. Using an independent cohort, we also showed that the numbers of risk alleles at these loci are negatively correlated with reactive oxygen species and interleukin-6 levels in response to Candida. Finally, there was a significant correlation between susceptibility and allelic scores based on 16 independent candidemia-associated single-nucleotide polymorphisms that affect monocyte-derived cytokines, but not with T cell-derived cytokines. CONCLUSIONS: Our results prioritize the disturbed lipid homeostasis and oxidative stress as potential mechanisms that affect monocyte-derived cytokines to influence susceptibility to candidemia.


Asunto(s)
Candida albicans/inmunología , Candidemia/genética , Estudio de Asociación del Genoma Completo , Genómica , Alelos , Candida albicans/patogenicidad , Candidemia/microbiología , Cromosomas Humanos Par 15 , Estudios de Cohortes , Citocinas/sangre , Citocinas/genética , Citocinas/metabolismo , Susceptibilidad a Enfermedades , Sitios Genéticos , Fosfolipasas A2 Grupo IV/sangre , Fosfolipasas A2 Grupo IV/genética , Fosfolipasas A2 Grupo IV/metabolismo , Homeostasis , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Interleucina-6/genética , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
15.
J Infect Dis ; 218(1): 165-170, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29618104

RESUMEN

Cellular metabolism can influence host immune responses to Mycobacterium tuberculosis. Using a systems biology approach, differential expression of 292 metabolic genes involved in glycolysis, glutathione, pyrimidine, and inositol phosphate pathways was evident at the site of a human tuberculin skin test challenge in patients with active tuberculosis infection. For 28 metabolic genes, we identified single nucleotide polymorphisms that were trans-acting for in vitro cytokine responses to M. tuberculosis stimulation, including glutathione and pyrimidine metabolism genes that alter production of Th1 and Th17 cytokines. Our findings identify novel therapeutic targets in host metabolism that may shape protective immunity to tuberculosis.


Asunto(s)
Citocinas/metabolismo , Metabolismo/genética , Mycobacterium tuberculosis/inmunología , Células TH1/metabolismo , Células Th17/metabolismo , Tuberculosis/patología , Adulto , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Biología de Sistemas/métodos , Adulto Joven
16.
Viruses ; 16(4)2024 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-38675924

RESUMEN

In people living with HIV (PLHIV), integrase strand transfer inhibitors (INSTIs) are part of the first-line combination antiretroviral therapy (cART), while non-nucleoside reverse transcriptase inhibitor (NNRTI)-based regimens are alternatives. Distinct cART regimens may variably influence the risk for non-AIDS comorbidities. We aimed to compare the metabolome and lipidome of INSTI and NNRTI-based regimens. The 2000HIV study includes asymptomatic PLHIV (n = 1646) on long-term cART, separated into a discovery cohort with 730 INSTI and 617 NNRTI users, and a validation cohort encompassing 209 INSTI and 90 NNRTI users. Baseline plasma samples from INSTI and NNRTI users were compared using mass spectrometry-based untargeted metabolomic (n = 500) analysis. Perturbed metabolic pathways were identified using MetaboAnalyst software. Subsequently, nuclear magnetic resonance spectroscopy was used for targeted lipoprotein and lipid (n = 141) analysis. Metabolome homogeneity was observed between the different types of INSTI and NNRTI. In contrast, higher and lower levels of 59 and 45 metabolites, respectively, were found in the INSTI group compared to NNRTI users, of which 77.9% (81/104) had consistent directionality in the validation cohort. Annotated metabolites belonged mainly to 'lipid and lipid-like molecules', 'organic acids and derivatives' and 'organoheterocyclic compounds'. In pathway analysis, perturbed 'vitamin B1 (thiamin) metabolism', 'de novo fatty acid biosynthesis', 'bile acid biosynthesis' and 'pentose phosphate pathway' were detected, among others. Lipoprotein and lipid levels in NNRTIs were heterogeneous and could not be compared as a group. INSTIs compared to individual NNRTI types showed that HDL cholesterol was lower in INSTIs compared to nevirapine but higher in INSTIs compared to doravirine. In addition, LDL size was lower in INSTIs and nevirapine compared to doravirine. NNRTIs show more heterogeneous cardiometabolic effects than INSTIs, which hampers the comparison between these two classes of drugs. Targeted lipoproteomic and lipid NMR spectroscopy showed that INSTI use was associated with a more unfavorable lipid profile compared to nevirapine, which was shifted to a more favorable profile for INSTI when substituting nevirapine for doravirine, with evidently higher fold changes. The cardiovascular disease risk profile seems more favorable in INSTIs compared to NNRTIs in untargeted metabolomic analysis using mass-spectrometry.


Asunto(s)
Infecciones por VIH , Inhibidores de Integrasa VIH , Inhibidores de la Transcriptasa Inversa , Humanos , Infecciones por VIH/tratamiento farmacológico , Inhibidores de la Transcriptasa Inversa/uso terapéutico , Masculino , Femenino , Persona de Mediana Edad , Adulto , Inhibidores de Integrasa VIH/uso terapéutico , Metaboloma/efectos de los fármacos , Fármacos Anti-VIH/uso terapéutico , Metabolómica , Estudios de Cohortes , Terapia Antirretroviral Altamente Activa
17.
Front Immunol ; 15: 1350065, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38779686

RESUMEN

Introduction: Immunological non-responders (INR) are people living with HIV (PLHIV) who fail to fully restore CD4+ T-cell counts despite complete viral suppression with antiretroviral therapy (ART). INR are at higher risk for non-HIV related morbidity and mortality. Previous research suggest persistent qualitative defects. Methods: The 2000HIV study (clinical trials NTC03994835) enrolled 1895 PLHIV, divided in a discovery and validation cohort. PLHIV with CD4 T-cell count <350 cells/mm3 after ≥2 years of suppressive ART were defined as INR and were compared to immunological responders (IR) with CD4 T-cell count >500 cells/mm3. Logistic and rank based regression were used to analyze clinical data, extensive innate and adaptive immunophenotyping, and ex vivo monocyte and lymphocyte cytokine production after stimulation with various stimuli. Results: The discovery cohort consisted of 62 INR and 1224 IR, the validation cohort of 26 INR and 243 IR. INR were older, had more advanced HIV disease before starting ART and had more frequently a history of non-AIDS related malignancy. INR had lower absolute CD4+ T-cell numbers in all subsets. Activated (HLA-DR+, CD38+) and exhausted (PD1+) subpopulations were proportionally increased in CD4 T-cells. Monocyte and granulocyte immunophenotypes were comparable. INR lymphocytes produced less IL-22, IFN-γ, IL-10 and IL-17 to stimuli. In contrast, monocyte cytokine production did not differ. The proportions of CD4+CD38+HLA-DR+ and CD4+PD1+ subpopulations showed an inversed correlation to lymphocyte cytokine production. Conclusions: INR compared to IR have hyperactivated and exhausted CD4+ T-cells in combination with lymphocyte functional impairment, while innate immune responses were comparable. Our data provide a rationale to consider the use of anti-PD1 therapy in INR.


Asunto(s)
Citocinas , Infecciones por VIH , Inmunosenescencia , Humanos , Infecciones por VIH/inmunología , Infecciones por VIH/tratamiento farmacológico , Masculino , Femenino , Citocinas/metabolismo , Persona de Mediana Edad , Adulto , Recuento de Linfocito CD4 , Linfocitos T CD4-Positivos/inmunología , Inmunofenotipificación , Fármacos Anti-VIH/uso terapéutico , VIH-1/inmunología , Carga Viral
18.
Microbiol Spectr ; 11(1): e0225622, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36475892

RESUMEN

The reprogramming of cellular metabolism of immune cells is an essential process in the regulation of antifungal immune responses. In particular, glucose metabolism has been shown to be required for protective immunity against infection with Aspergillus fumigatus. However, given the intricate cross talk between multiple metabolic networks and signals, it is likely that cellular metabolic pathways other than glycolysis are also relevant during fungal infection. In this study, we demonstrate that glutamine metabolism is required for the activation of macrophage effector functions against A. fumigatus. Glutamine metabolism was found to be upregulated early after fungal infection and glutamine depletion or the pharmacological inhibition of enzymes involved in its metabolism impaired phagocytosis and the production of both proinflammatory and T-cell-derived cytokines. In an in vivo model, inhibition of glutaminase increased susceptibility to experimental aspergillosis, as revealed by the increased fungal burden and inflammatory pathology, and the defective cytokine production in the lungs. Moreover, genetic variants in glutamine metabolism genes were found to regulate cytokine production in response to A. fumigatus stimulation. Taken together, our results demonstrate that glutamine metabolism represents an important component of the immunometabolic response of macrophages against A. fumigatus both in vitro and in vivo. IMPORTANCE The fungal pathogen Aspergillus fumigatus can cause severe and life-threatening forms of infection in immunocompromised patients. The reprogramming of cellular metabolism is essential for innate immune cells to mount effective antifungal responses. In this study, we report the pivotal contribution of glutaminolysis to the host defense against A. fumigatus. Glutamine metabolism was essential both in vitro as well as in in vivo models of infection, and genetic variants in human glutamine metabolism genes regulated cytokine production in response to fungal stimulation. This work highlights the relevance of glutaminolysis to the pathogenesis of aspergillosis and supports a role for interindividual genetic variation influencing glutamine metabolism in susceptibility to infection.


Asunto(s)
Aspergilosis , Aspergillus fumigatus , Humanos , Aspergillus fumigatus/genética , Glutamina , Antifúngicos , Aspergilosis/microbiología , Citocinas/metabolismo
19.
iScience ; 26(4): 106486, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37091231

RESUMEN

HIV-1 reservoir shows high variability in size and activity among virally suppressed individuals. Differences in the size of the viral reservoir may relate to differences in plasma protein concentrations. We tested whether plasma protein expression levels are associated with levels of cell-associated (CA) HIV-1 DNA and RNA in 211 virally suppressed people living with HIV (PLHIV). Plasma concentrations of FOLR1, IL1R1, MICA, and FETUB showed a positive association with CA HIV-1 RNA and DNA. Moreover, SNPs in close proximity to IL1R1 and MICA genes were found to influence the levels of CA HIV-1 RNA and DNA. We found a difference in mRNA expression of the MICA gene in homozygotes carrying the rs9348866-A allele compared to the ones carrying the G allele (p < 0.005). Overall, our findings pinpoint plasma proteins that could serve as potential targets for therapeutic interventions to lower or even eradicate cells containing CA HIV-1 RNA and DNA in PLHIV.

20.
J Genet Genomics ; 50(6): 434-446, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36681271

RESUMEN

Genetic variation is a key factor influencing cytokine production capacity, but which genetic loci regulate cytokine production before and after vaccination, particularly in African population is unknown. Here, we aimed to identify single-nucleotide polymorphisms (SNPs) controlling cytokine responses after microbial stimulation in infants of West-African ancestry, comprising of low-birth-weight neonates randomized to bacillus Calmette-Guérin (BCG) vaccine-at-birth or to the usual delayed BCG. Genome-wide cytokine cytokine quantitative trait loci (cQTL) mapping revealed 12 independent loci, of which the LINC01082-LINC00917 locus influenced more than half of the cytokine-stimulation pairs assessed. Furthermore, nine distinct cQTLs were found among infants randomized to BCG. Functional validation confirmed that several complement genes affect cytokine response after BCG vaccination. We observed a limited overlap of common cQTLs between the West-African infants and cohorts of Western European individuals. These data reveal strong population-specific genetic effects on cytokine production and may indicate new opportunities for therapeutic intervention and vaccine development in African populations.


Asunto(s)
Vacuna BCG , Citocinas , Recién Nacido , Lactante , Humanos , Niño , Vacuna BCG/genética , Citocinas/genética , África Occidental , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA