Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Nature ; 499(7457): 172-7, 2013 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-23846655

RESUMEN

RNA-binding proteins are key regulators of gene expression, yet only a small fraction have been functionally characterized. Here we report a systematic analysis of the RNA motifs recognized by RNA-binding proteins, encompassing 205 distinct genes from 24 diverse eukaryotes. The sequence specificities of RNA-binding proteins display deep evolutionary conservation, and the recognition preferences for a large fraction of metazoan RNA-binding proteins can thus be inferred from their RNA-binding domain sequence. The motifs that we identify in vitro correlate well with in vivo RNA-binding data. Moreover, we can associate them with distinct functional roles in diverse types of post-transcriptional regulation, enabling new insights into the functions of RNA-binding proteins both in normal physiology and in human disease. These data provide an unprecedented overview of RNA-binding proteins and their targets, and constitute an invaluable resource for determining post-transcriptional regulatory mechanisms in eukaryotes.


Asunto(s)
Regulación de la Expresión Génica/genética , Motivos de Nucleótidos/genética , Proteínas de Unión al ARN/metabolismo , Trastorno Autístico/genética , Secuencia de Bases , Sitios de Unión/genética , Secuencia Conservada/genética , Células Eucariotas/metabolismo , Humanos , Datos de Secuencia Molecular , Estructura Terciaria de Proteína/genética , Factores de Empalme de ARN , Estabilidad del ARN/genética , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética
2.
J Cell Sci ; 127(Pt 13): 2956-66, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24706949

RESUMEN

Chromatin insulators are DNA-protein complexes that are situated throughout the genome that are proposed to contribute to higher-order organization and demarcation into distinct transcriptional domains. Mounting evidence in different species implicates RNA and RNA-binding proteins as regulators of chromatin insulator activities. Here, we identify the Drosophila hnRNP M homolog Rumpelstiltskin (Rump) as an antagonist of gypsy chromatin insulator enhancer-blocking and barrier activities. Despite ubiquitous expression of Rump, decreasing Rump levels leads to improvement of barrier activity only in tissues outside of the central nervous system (CNS). Furthermore, rump mutants restore insulator body localization in an insulator mutant background only in non-CNS tissues. Rump associates physically with core gypsy insulator proteins, and chromatin immunoprecipitation and sequencing analysis of Rump demonstrates extensive colocalization with a subset of insulator sites across the genome. The genome-wide binding profile and tissue specificity of Rump contrast with that of Shep, a recently identified RNA-binding protein that antagonizes gypsy insulator activity primarily in the CNS. Our findings indicate parallel roles for RNA-binding proteins in mediating tissue-specific regulation of chromatin insulator activity.


Asunto(s)
Cromatina/metabolismo , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/antagonistas & inhibidores , Animales , Cromatina/genética , Drosophila , Proteínas de Drosophila/genética , Femenino , Ribonucleoproteínas Nucleares Heterogéneas/genética , Masculino , Proteínas de Unión al ARN/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
3.
Nucleic Acids Res ; 42(14): 9158-70, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25063299

RESUMEN

Here we introduce metaseq, a software library written in Python, which enables loading multiple genomic data formats into standard Python data structures and allows flexible, customized manipulation and visualization of data from high-throughput sequencing studies. We demonstrate its practical use by analyzing multiple datasets related to chromatin insulators, which are DNA-protein complexes proposed to organize the genome into distinct transcriptional domains. Recent studies in Drosophila and mammals have implicated RNA in the regulation of chromatin insulator activities. Moreover, the Drosophila RNA-binding protein Shep has been shown to antagonize gypsy insulator activity in a tissue-specific manner, but the precise role of RNA in this process remains unclear. Better understanding of chromatin insulator regulation requires integration of multiple datasets, including those from chromatin-binding, RNA-binding, and gene expression experiments. We use metaseq to integrate RIP- and ChIP-seq data for Shep and the core gypsy insulator protein Su(Hw) in two different cell types, along with publicly available ChIP-chip and RNA-seq data. Based on the metaseq-enabled analysis presented here, we propose a model where Shep associates with chromatin cotranscriptionally, then is recruited to insulator complexes in trans where it plays a negative role in insulator activity.


Asunto(s)
Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Genómica/métodos , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Programas Informáticos , Región de Flanqueo 5' , Sitios de Unión , Línea Celular , Núcleo Celular/genética , Inmunoprecipitación de Cromatina , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunoprecipitación , Elementos Aisladores , Análisis de Secuencia de ARN , Transcripción Genética
4.
Biochim Biophys Acta ; 1839(3): 203-14, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24189492

RESUMEN

The control of complex, developmentally regulated loci and partitioning of the genome into active and silent domains is in part accomplished through the activity of DNA-protein complexes termed chromatin insulators. Together, the multiple, well-studied classes of insulators in Drosophila melanogaster appear to be generally functionally conserved. In this review, we discuss recent genomic-scale experiments and attempt to reconcile these newer findings in the context of previously defined insulator characteristics based on classical genetic analyses and transgenic approaches. Finally, we discuss the emerging understanding of mechanisms of chromatin insulator regulation. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.


Asunto(s)
Ensamble y Desensamble de Cromatina/fisiología , Sitios Genéticos/fisiología , Genómica , Elementos Aisladores/fisiología , Animales , Animales Modificados Genéticamente/genética , Animales Modificados Genéticamente/metabolismo , Drosophila melanogaster , Humanos
5.
EMBO Rep ; 14(10): 916-22, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23917615

RESUMEN

Chromatin insulators are DNA protein complexes situated throughout the genome capable of demarcating independent transcriptional domains. Previous studies point to an important role for RNA in gypsy chromatin insulator function in Drosophila; however, the identity of these putative insulator-associated RNAs is not currently known. Here we utilize RNA-immunoprecipitation and high throughput sequencing (RIP-seq) to isolate RNAs stably associated with gypsy insulator complexes. Strikingly, these RNAs correspond to specific sense-strand, spliced and polyadenylated mRNAs, including two insulator protein transcripts. In order to assess the functional significance of these associated mRNAs independent of their coding function, we expressed untranslatable versions of these transcripts in developing flies and observed both alteration of insulator complex nuclear localization as well as improvement of enhancer-blocking activity. Together, these data suggest a novel, noncoding mechanism by which certain mRNAs contribute to chromatin insulator function.


Asunto(s)
Cromatina/metabolismo , Elementos Aisladores , ARN Mensajero/metabolismo , Animales , Drosophila/genética , Drosophila/metabolismo , Elementos de Facilitación Genéticos , ARN Mensajero/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
6.
PLoS Genet ; 8(11): e1003069, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23209434

RESUMEN

Chromatin insulators organize the genome into distinct transcriptional domains and contribute to cell type-specific chromatin organization. However, factors regulating tissue-specific insulator function have not yet been discovered. Here we identify the RNA recognition motif-containing protein Shep as a direct interactor of two individual components of the gypsy insulator complex in Drosophila. Mutation of shep improves gypsy-dependent enhancer blocking, indicating a role as a negative regulator of insulator activity. Unlike ubiquitously expressed core gypsy insulator proteins, Shep is highly expressed in the central nervous system (CNS) with lower expression in other tissues. We developed a novel, quantitative tissue-specific barrier assay to demonstrate that Shep functions as a negative regulator of insulator activity in the CNS but not in muscle tissue. Additionally, mutation of shep alters insulator complex nuclear localization in the CNS but has no effect in other tissues. Consistent with negative regulatory activity, ChIP-seq analysis of Shep in a CNS-derived cell line indicates substantial genome-wide colocalization with a single gypsy insulator component but limited overlap with intact insulator complexes. Taken together, these data reveal a novel, tissue-specific mode of regulation of a chromatin insulator.


Asunto(s)
Cromatina/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Elementos Aisladores/genética , Especificidad de Órganos , Proteínas Represoras/genética , Animales , Sistema Nervioso Central/metabolismo , Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genoma , Músculos/metabolismo , Mutación , Motivos de Nucleótidos/genética , Proteínas Represoras/metabolismo
7.
Nat Commun ; 12(1): 6366, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34737269

RESUMEN

During development, looping of an enhancer to a promoter is frequently observed in conjunction with temporal and tissue-specific transcriptional activation. The chromatin insulator-associated protein Alan Shepard (Shep) promotes Drosophila post-mitotic neuronal remodeling by repressing transcription of master developmental regulators, such as brain tumor (brat), specifically in maturing neurons. Since insulator proteins can promote looping, we hypothesized that Shep antagonizes brat promoter interaction with an as yet unidentified enhancer. Using chromatin conformation capture and reporter assays, we identified two enhancer regions that increase in looping frequency with the brat promoter specifically in pupal brains after Shep depletion. The brat promoters and enhancers function independently of Shep, ruling out direct repression of these elements. Moreover, ATAC-seq in isolated neurons demonstrates that Shep restricts chromatin accessibility of a key brat enhancer as well as other enhancers genome-wide in remodeling pupal but not larval neurons. These enhancers are enriched for chromatin targets of Shep and are located at Shep-inhibited genes, suggesting direct Shep inhibition of enhancer accessibility and gene expression during neuronal remodeling. Our results provide evidence for temporal regulation of chromatin looping and enhancer accessibility during neuronal maturation.


Asunto(s)
Cromatina/metabolismo , Proteínas de Drosophila/metabolismo , Plasticidad Neuronal/fisiología , Animales , Cromatina/química , Cromatina/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Elementos de Facilitación Genéticos , Regiones Promotoras Genéticas , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
8.
Mol Biol Cell ; 17(2): 931-43, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16314397

RESUMEN

Interactions between transport receptors and phenylalanine-glycine (FG) repeats on nucleoporins drive the translocation of receptor-cargo complexes through nuclear pores. Tap, a transport receptor that mediates nuclear export of cellular mRNAs, contains a UBA-like and NTF2-like folds that can associate directly with FG repeats. In addition, two nuclear export sequences (NESs) within the NTF2-like region can also interact with nucleoporins. The Tap-RNA complex was shown to bind to three nucleoporins, Nup98, p62, and RanBP2, and these interactions were enhanced by Nxt1. Mutations in the Tap-UBA region abolished interactions with all three nucleoporins, whereas the effect of point mutations within the NTF2-like domain of Tap known to disrupt Nxt1 binding or nucleoporin binding were nucleoporin dependent. A mutation in any of these Tap domains was sufficient to reduce RNA export but was not sufficient to disrupt Tap interaction with the NPC in vivo or its nucleocytoplasmic shuttling. However, shuttling activity was reduced or abolished by combined mutations within the UBA and either the Nxt1-binding domain or NESs. These data suggest that Tap requires both the UBA- and NTF2-like domains to mediate the export of RNA cargo, but can move through the pores independently of these domains when free of RNA cargo.


Asunto(s)
Antígenos de Histocompatibilidad Clase I/fisiología , Poro Nuclear/metabolismo , ARN Mensajero/metabolismo , Transportadoras de Casetes de Unión a ATP , Transporte Activo de Núcleo Celular , Animales , Sitios de Unión , Células COS , Fusión Celular , Chlorocebus aethiops , Antígenos de Histocompatibilidad Clase I/química , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Ratones , Mutación , Células 3T3 NIH , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Estructura Terciaria de Proteína/fisiología , Transporte de ARN
9.
G3 (Bethesda) ; 9(3): 749-754, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30630880

RESUMEN

Chromatin insulators are DNA-protein complexes that regulate chromatin structure and gene expression in a wide range of organisms. These complexes also harbor enhancer blocking and barrier activities. Increasing evidence suggests that RNA molecules are integral components of insulator complexes. However, how these RNA molecules are involved in insulator function remains unclear. The Drosophila RNA-binding protein Shep associates with the gypsy insulator complex and inhibits insulator activities. By mutating key residues in the RRM domains, we generated a Shep mutant protein incapable of RNA-binding, and this mutant lost the ability to inhibit barrier activity. In addition, we found that one of many wildtype Shep isoforms but not RRM mutant Shep was sufficient to repress enhancer blocking activities. Finally, wildtype Shep rescued synthetic lethality of shep, mod(mdg4) double-mutants and developmental defects of shep mutant neurons, whereas mutant Shep failed to do so. These results indicate that the RNA-binding ability of Shep is essential for its ability to antagonize insulator activities and promote neuronal maturation. Our findings suggest that regulation of insulator function by RNA-binding proteins relies on RNA-mediated interactions.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulación del Desarrollo de la Expresión Génica , Neuronas/metabolismo , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/metabolismo , Animales , Drosophila melanogaster/genética , Femenino , ARN/metabolismo , Proteínas Recombinantes/metabolismo
10.
Mol Biol Cell ; 19(1): 327-38, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17978099

RESUMEN

Nuclear export of mRNAs is mediated by the Tap/Nxt1 pathway. Tap moves its RNA cargo through the nuclear pore complex by direct interaction with nucleoporin phenylalanine-glycine repeats. This interaction is strengthened by the formation of a Tap/Nxt1 heterodimer. We now present evidence that Tap can form a multimeric complex with itself and with other members of the NXF family. We also show that the homotypic Tap complex can interact with both Nxt1 and nucleoporins in vitro. The region mediating this oligomerization is localized to the first 187 amino acids of Tap, which overlaps with its RNA-binding domain. Removal of this domain greatly reduces the ability of Tap to bind nucleoporins in vitro and in vivo. This is the first report showing that the Tap amino terminus modulates the interaction of Tap with nucleoporins. We speculate that this mechanism has a regulatory role for RNA export independent of RNA binding.


Asunto(s)
Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Animales , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Células HeLa , Humanos , Complejos Multiproteicos/metabolismo , Proteínas Mutantes/metabolismo , Unión Proteica , Mapeo de Interacción de Proteínas , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Transporte de Proteínas , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA