Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Biosci Med (Irvine) ; 11(2): 177-185, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36945328

RESUMEN

Alzheimer's disease (AD) is a brain disorder that eventually causes memory loss and the ability to perform simple cognitive functions; research efforts within pharmaceuticals and other medical treatments have minimal impact on the disease. Our preliminary biological studies showed that Repeated Electromagnetic Field Stimulation (REFMS) applying an EM frequency of 64 MHz and a specific absorption rate (SAR) of 0.4 - 0.9 W/kg decrease the level of amyloid-ß peptides (Aß), which is the most likely etiology of AD. This study emphasizes uniform E/H field and SAR distribution with adequate penetration depth penetration through multiple human head layers driven with low input power for safety treatments. In this work, we performed numerical modeling and computer simulations of a portable Meander Line antenna (MLA) to achieve the required EMF parameters to treat AD. The MLA device features a low cost, small size, wide bandwidth, and the ability to integrate into a portable system. This study utilized a High-Frequency Simulation System (HFSS) in the design of the MLA with the desired characteristics suited for AD treatment in humans. The team designed a 24-turn antenna with a 60 cm length and 25 cm width and achieved the required resonant frequency of 64 MHz. Here we used two numerical human head phantoms to test the antenna, the MIDA and spherical head phantom with six and seven tissue layers, respectively. The antenna was fed from a 50-Watt input source to obtain the SAR of 0.6 W/kg requirement in the center of the simulated brain tissue layer. We found that the E/H field and SAR distribution produced was not homogeneous; there were areas of high SAR values close to the antenna transmitter, also areas of low SAR value far away from the antenna. This paper details the antenna parameters, the scattering parameters response, the efficiency response, and the E and H field distribution; we presented the computer simulation results and discussed future work for a practical model.

2.
J Biomed Sci Eng ; 15(5): 129-139, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35663520

RESUMEN

In this paper, we follow up with our preliminary biological studies that showed that Repeated electromagnetic field stimulation (REMFS) decreased the toxic amyloid-beta (Aß) levels, which is considered to be the cause of Alzheimer's disease (AD). The REMFS parameters of these exposures were a frequency of 64 MHz and a Specific absorption rate (SAR) of 0.4 to 0.9 W/Kg in primary human neuronal cultures. In this work, an electromagnetic field (EMF) model was simulated using high-frequency simulation system (HFSS/EMPro) software. Our goal was to achieve the EM parameters (EMF Frequency and SAR) required to decrease the toxic Aß levels in our biological studies in a simulated human head. The simulations performed here will potentially lead to the successful development of an exposure system to treat Alzheimer's disease patients. A popular VFH (very high frequency) patch microstrip antenna system was considered in the study. The selection was based on simple and easy construction and appropriateness to the VHF applications. The evaluation of the SAR and temperature distribution on the various head layers, including skin, fat, dura, the cerebrospinal (CSF), and grey matter, brain tissues, were determined for efficacy SAR and safety temperature increase on a simulated human head. Based on a current pulse of 1 A peak current fed to the antenna feeder, a maximum SAR of 0.6 W/Kg was achieved. A range of 0.4 to 0.6 SAR was observed over the various layers of the simulated human head. The initial design of the antenna indicated an antenna size in the order of 1 m in length and width, suggesting a stationary practical model for AD therapy. Future direction is given for wearable antenna and exposure system, featuring high efficiency and patient comfort.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA