Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 668
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Gastroenterology ; 167(4): 718-732.e18, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38729450

RESUMEN

BACKGROUND & AIMS: Acinar-to-ductal metaplasia (ADM) is crucial in the development of pancreatic ductal adenocarcinoma. However, our understanding of the induction and resolution of ADM remains limited. We conducted comparative transcriptome analyses to identify conserved mechanisms of ADM in mouse and human. METHODS: We identified Sox4 among the top up-regulated genes. We validated the analysis by RNA in situ hybridization. We performed experiments in mice with acinar-specific deletion of Sox4 (Ptf1a: CreER; Rosa26-LSL-YFPLSL-YFP; Sox4fl/fl) with and without an activating mutation in Kras (KrasLSL-G12D/+). Mice were given caerulein to induce pancreatitis. We performed phenotypic analysis by immunohistochemistry, tissue decellularization, and single-cell RNA sequencing. RESULTS: We demonstrated that Sox4 is reactivated in ADM and pancreatic intraepithelial neoplasias. Contrary to findings in other tissues, Sox4 actually counteracts cellular dedifferentiation and helps maintain tissue homeostasis. Moreover, our investigations unveiled the indispensable role of Sox4 in the specification of mucin-producing cells and tuft-like cells from acinar cells. We identified Sox4-dependent non-cell-autonomous mechanisms regulating the stromal reaction during disease progression. Notably, Sox4-inferred targets are activated upon KRAS inactivation and tumor regression. CONCLUSIONS: Our results indicate that our transcriptome analysis can be used to investigate conserved mechanisms of tissue injury. We demonstrate that Sox4 restrains acinar dedifferentiation and is necessary for the specification of acinar-derived metaplastic cells in pancreatic injury and cancer initiation and is activated upon Kras ablation and tumor regression in mice. By uncovering novel potential strategies to promote tissue homeostasis, our findings offer new avenues for preventing the development of pancreatic ductal adenocarcinoma.


Asunto(s)
Células Acinares , Carcinoma Ductal Pancreático , Desdiferenciación Celular , Ceruletida , Metaplasia , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas p21(ras) , Animales , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Células Acinares/patología , Células Acinares/metabolismo , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Metaplasia/genética , Metaplasia/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Ratones , Humanos , Pancreatitis/patología , Pancreatitis/genética , Pancreatitis/metabolismo , Factores de Transcripción SOXC/genética , Factores de Transcripción SOXC/metabolismo , Modelos Animales de Enfermedad , Páncreas/patología , Páncreas/metabolismo , Transformación Celular Neoplásica/patología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Regulación Neoplásica de la Expresión Génica , Perfilación de la Expresión Génica , Carcinoma in Situ/patología , Carcinoma in Situ/genética , Carcinoma in Situ/metabolismo , Transcriptoma
2.
PLoS Genet ; 18(7): e1010315, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35867772

RESUMEN

Proper Hedgehog (HH) signaling is essential for embryonic development, while aberrant HH signaling drives pediatric and adult cancers. HH signaling is frequently dysregulated in pancreatic cancer, yet its role remains controversial, with both tumor-promoting and tumor-restraining functions reported. Notably, the GLI family of HH transcription factors (GLI1, GLI2, GLI3), remain largely unexplored in pancreatic cancer. We therefore investigated the individual and combined contributions of GLI1-3 to pancreatic cancer progression. At pre-cancerous stages, fibroblast-specific Gli2/Gli3 deletion decreases immunosuppressive macrophage infiltration and promotes T cell infiltration. Strikingly, combined loss of Gli1/Gli2/Gli3 promotes macrophage infiltration, indicating that subtle changes in Gli expression differentially regulate immune infiltration. In invasive tumors, Gli2/Gli3 KO fibroblasts exclude immunosuppressive myeloid cells and suppress tumor growth by recruiting natural killer cells. Finally, we demonstrate that fibroblasts directly regulate macrophage and T cell migration through the expression of Gli-dependent cytokines. Thus, the coordinated activity of GLI1-3 directs the fibroinflammatory response throughout pancreatic cancer progression.


Asunto(s)
Proteínas Hedgehog , Neoplasias Pancreáticas , Adulto , Niño , Femenino , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neoplasias Pancreáticas/genética , Embarazo , Proteína con Dedos de Zinc GLI1/genética , Proteína Gli2 con Dedos de Zinc/genética , Proteína Gli3 con Dedos de Zinc/genética
3.
Genome Res ; 30(3): 347-360, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32029502

RESUMEN

Alternative polyadenylation (APA) is a gene regulatory process that dictates mRNA 3'-UTR length, resulting in changes in mRNA stability and localization. APA is frequently disrupted in cancer and promotes tumorigenesis through altered expression of oncogenes and tumor suppressors. Pan-cancer analyses have revealed common APA events across the tumor landscape; however, little is known about tumor type-specific alterations that may uncover novel events and vulnerabilities. Here, we integrate RNA-sequencing data from the Genotype-Tissue Expression (GTEx) project and The Cancer Genome Atlas (TCGA) to comprehensively analyze APA events in 148 pancreatic ductal adenocarcinomas (PDACs). We report widespread, recurrent, and functionally relevant 3'-UTR alterations associated with gene expression changes of known and newly identified PDAC growth-promoting genes and experimentally validate the effects of these APA events on protein expression. We find enrichment for APA events in genes associated with known PDAC pathways, loss of tumor-suppressive miRNA binding sites, and increased heterogeneity in 3'-UTR forms of metabolic genes. Survival analyses reveal a subset of 3'-UTR alterations that independently characterize a poor prognostic cohort among PDAC patients. Finally, we identify and validate the casein kinase CSNK1A1 (also known as CK1alpha or CK1a) as an APA-regulated therapeutic target in PDAC. Knockdown or pharmacological inhibition of CSNK1A1 attenuates PDAC cell proliferation and clonogenic growth. Our single-cancer analysis reveals APA as an underappreciated driver of protumorigenic gene expression in PDAC via the loss of miRNA regulation.


Asunto(s)
Carcinoma Ductal Pancreático/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas/genética , Poliadenilación , Regiones no Traducidas 3' , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidad , Adenocarcinoma/patología , Sitios de Unión , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/mortalidad , Carcinoma Ductal Pancreático/patología , Caseína Quinasa Ialfa/fisiología , Proliferación Celular , Humanos , MicroARNs/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/mortalidad , Neoplasias Pancreáticas/patología , Pronóstico , RNA-Seq
4.
Gastroenterology ; 159(5): 1866-1881.e8, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32717220

RESUMEN

BACKGROUND & AIMS: Development of pancreatic ductal adenocarcinoma (PDA) involves acinar to ductal metaplasia and genesis of tuft cells. It has been a challenge to study these rare cells because of the lack of animal models. We investigated the role of tuft cells in pancreatic tumorigenesis. METHODS: We performed studies with LSL-KrasG12D/+;Ptf1aCre/+ mice (KC; develop pancreatic tumors), KC mice crossed with mice with pancreatic disruption of Pou2f3 (KPouC mice; do not develop tuft cells), or mice with pancreatic disruption of the hematopoietic prostaglandin D synthase gene (Hpgds, KHC mice) and wild-type mice. Mice were allowed to age or were given caerulein to induce pancreatitis; pancreata were collected and analyzed by histology, immunohistochemistry, RNA sequencing, ultrastructural microscopy, and metabolic profiling. We performed laser-capture dissection and RNA-sequencing analysis of pancreatic tissues from 26 patients with pancreatic intraepithelial neoplasia (PanIN), 19 patients with intraductal papillary mucinous neoplasms (IPMNs), and 197 patients with PDA. RESULTS: Pancreata from KC mice had increased formation of tuft cells and higher levels of prostaglandin D2 than wild-type mice. Pancreas-specific deletion of POU2F3 in KC mice (KPouC mice) resulted in a loss of tuft cells and accelerated tumorigenesis. KPouC mice had increased fibrosis and activation of immune cells after administration of caerulein. Pancreata from KPouC and KHC mice had significantly lower levels of prostaglandin D2, compared with KC mice, and significantly increased numbers of PanINs and PDAs. KPouC and KHC mice had increased pancreatic injury after administration of caerulein, significantly less normal tissue, more extracellular matrix deposition, and higher PanIN grade than KC mice. Human PanIN and intraductal papillary mucinous neoplasm had gene expression signatures associated with tuft cells and increased expression of Hpgds messenger RNA compared with PDA. CONCLUSIONS: In mice with KRAS-induced pancreatic tumorigenesis, loss of tuft cells accelerates tumorigenesis and increases the severity of caerulein-induced pancreatic injury, via decreased production of prostaglandin D2. These data are consistent with the hypothesis that tuft cells are a metaplasia-induced tumor attenuating cell type.


Asunto(s)
Carcinoma Ductal Pancreático/prevención & control , Transformación Celular Neoplásica/metabolismo , Páncreas/metabolismo , Neoplasias Pancreáticas/prevención & control , Prostaglandina D2/metabolismo , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Ceruletida , Modelos Animales de Enfermedad , Metabolismo Energético , Fibrosis , Humanos , Interleucinas/genética , Interleucinas/metabolismo , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo , Ratones Transgénicos , Mutación , Factores de Transcripción de Octámeros/genética , Factores de Transcripción de Octámeros/metabolismo , Páncreas/patología , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Pancreatitis/inducido químicamente , Pancreatitis/genética , Pancreatitis/metabolismo , Pancreatitis/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Factores de Tiempo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
5.
Exp Cell Res ; 390(2): 111960, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32194036

RESUMEN

Human leukocyte antigen (HLA) class I molecules present antigenic peptides to cytotoxic T cells, causing lysis of malignant cells. Transplantation biology studies have implicated HLA class I molecules in cell migration, but there has been little evidence presented that they influence cancer cell migration, a contributing factor in metastasis. In this study, we examined the effect of HLA-B on pancreatic cancer cell migration. HLA-B siRNA transfection increased the migration of the S2-013 pancreatic cancer cells but, in contrast, reduced migration of the PANC-1 and MIA PaCa-2 pancreatic cancer cell lines. Integrin molecules have previously been implicated in the upregulation of pancreatic cancer cell migration, and knockdown of HLA-B in S2-013 cells heightened the expression of integrin beta 1 (ITGB1), but in the PANC-1 and MIA PaCa-2 cells HLA-B knockdown diminished ITGB1 expression. A transmembrane sequence in an S2-013 HLA-B heavy chain matches a corresponding sequence in HLA-B in the BxPC-3 pancreatic cancer cell line, and knockdown of BxPC-3 HLA-B mimics the effect of S2-013 HLA-B knockdown on migration. In total, our findings indicate that HLA-B influences the expression of ITGB1 in pancreatic cancer cells, with concurrent distinctions in transmembrane sequences and effects on the migration of the cells.


Asunto(s)
Movimiento Celular/genética , Regulación Neoplásica de la Expresión Génica , Antígenos HLA-B/genética , Integrina beta1/genética , Páncreas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Quinasa 1 de Adhesión Focal/genética , Quinasa 1 de Adhesión Focal/metabolismo , Antígenos HLA-B/metabolismo , Humanos , Integrina alfa2/genética , Integrina alfa2/metabolismo , Integrina beta1/metabolismo , Especificidad de Órganos , Páncreas/patología , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal
6.
Anaesthesist ; 70(4): 280-290, 2021 Apr.
Artículo en Alemán | MEDLINE | ID: mdl-33231714

RESUMEN

BACKGROUND: The logistic peculiarities of an emergency maritime location and the frequent additional threat of accidental hypothermia mean that the treatment of medical emergencies at sea are particularly demanding. This article describes the characteristics of emergency medical missions of the German Maritime Search and Rescue Service (DGzRS) as the main provider of non-helicopter-based medical maritime rescue on the seas off the coasts of Germany. MATERIAL AND METHODS: A retrospective analysis of all missions by the DGzRS in 2017 and 2018 was carried out. The data and times of the missions as well as the severity of the diseases of the patients (graduated using the NACA score) were evaluated and exemplarily compared to those of a medical emergency ambulance service from the City of Lübeck. RESULTS: In a total of 182 medical missions 224 patients were treated. The mission units of the DGzRS needed a mean time of 30 ± 21 min up to arrival and 43 ± 30 min for rescue, treatment and transport. In 63 missions the patients were accompanied by an emergency physician, who was brought in from the ground rescue service in 44 missions. Due to the waiting time for boarding of the additional personnel, the departure in 26 missions was delayed by an average of 18 ± 7 min. The average severity of the disease in the maritime rescue was significantly higher than in the emergency medical service of Lübeck but the number of resuscitations and fatalities were comparable. CONCLUSION: Although the severity of medical emergencies on the seas off the coasts of Germany was high, the emergency physicians frequently arrived with a considerable delay. There is an urgent need for an effective support of the DGzRS by medical personnel specifically trained for maritime missions.


Asunto(s)
Ambulancias Aéreas , Servicios Médicos de Urgencia , Medicina de Emergencia , Urgencias Médicas , Humanos , Mar del Norte , Océanos y Mares , Trabajo de Rescate , Estudios Retrospectivos
7.
Gastroenterology ; 157(2): 492-506.e2, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30998992

RESUMEN

BACKGROUND & AIMS: Barrett's esophagus (BE) is a precursor to esophageal adenocarcinoma (EAC). Progression from BE to cancer is associated with obesity, possibly due to increased abdominal pressure and gastroesophageal reflux disease, although this pathogenic mechanism has not been proven. We investigated whether environmental or dietary factors associated with obesity contribute to the progression of BE to EAC in mice. METHODS: Tg(ED-L2-IL1RN/IL1B)#Tcw mice (a model of BE, called L2-IL1B mice) were fed a chow (control) or high-fat diet (HFD) or were crossbred with mice that express human interleukin (IL) 8 (L2-IL1B/IL8 mice). Esophageal tissues were collected and analyzed for gene expression profiles and by quantitative polymerase chain reaction, immunohistochemistry, and flow cytometry. Organoids were established from BE tissue of mice and cultured with serum from lean or obese individuals or with neutrophils from L2-IL1B mice. Feces from mice were analyzed by 16s ribosomal RNA sequencing and compared to 16s sequencing data from patients with dysplasia or BE. L2-IL1B were mice raised in germ-free conditions. RESULTS: L2-IL1B mice fed an HFD developed esophageal dysplasia and tumors more rapidly than mice fed the control diet; the speed of tumor development was independent of body weight. The acceleration of dysplasia by the HFD in the L2-IL1B mice was associated with a shift in the gut microbiota and an increased ratio of neutrophils to natural killer cells in esophageal tissues compared with mice fed a control diet. We observed similar differences in the microbiomes from patients with BE that progressed to EAC vs patients with BE that did not develop into cancer. Tissues from dysplasias of L2-IL1B mice fed the HFD contained increased levels of cytokines that are produced in response to CXCL1 (the functional mouse homolog of IL8, also called KC). Serum from obese patients caused organoids from L2-IL1B/IL8 mice to produce IL8. BE tissues from L2-IL1B mice fed the HFD and from L2-IL1B/IL8 mice contained increased numbers of myeloid cells and cells expressing Cxcr2 and Lgr5 messenger RNAs (epithelial progenitors) compared with mice fed control diets. BE tissues from L2-IL1B mice raised in germ-free housing had fewer progenitor cells and developed less dysplasia than in L2-IL1 mice raised under standard conditions; exposure of fecal microbiota from L2-IL1B mice fed the HFD to L2-IL1B mice fed the control diet accelerated tumor development. CONCLUSIONS: In a mouse model of BE, we found that an HFD promoted dysplasia by altering the esophageal microenvironment and gut microbiome, thereby inducing inflammation and stem cell expansion, independent of obesity.


Asunto(s)
Adenocarcinoma/patología , Esófago de Barrett/patología , Neoplasias Esofágicas/patología , Microbioma Gastrointestinal/fisiología , Interleucina-8/metabolismo , Obesidad/patología , Adenocarcinoma/inmunología , Adulto , Anciano , Animales , Esófago de Barrett/inmunología , Carcinogénesis/inmunología , Carcinogénesis/patología , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Neoplasias Esofágicas/inmunología , Esófago/inmunología , Esófago/patología , Heces/microbiología , Femenino , Voluntarios Sanos , Humanos , Interleucina-8/genética , Interleucina-8/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Obesidad/sangre , Obesidad/inmunología , Organoides , Suero/inmunología , Suero/metabolismo , Factores de Tiempo , Técnicas de Cultivo de Tejidos
8.
Arch Toxicol ; 90(9): 2161-2172, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27369376

RESUMEN

This paper reviews high-resolution mass spectrometry (HRMS) approaches using time-of-flight or Orbitrap techniques for research and application in various toxicology fields, particularly in clinical toxicology and forensic toxicology published since 2013 and referenced in PubMed. In the introduction, an overview on applications of HRMS in various toxicology fields is given with reference to current review articles. Papers concerning HRMS in metabolism, screening, and quantification of pharmaceuticals, drugs of abuse, and toxins in human body samples are critically reviewed. Finally, a discussion on advantages as well as limitations and future perspectives of these methods is included.


Asunto(s)
Espectrometría de Masas/métodos , Toxicología/métodos , Animales , Difusión de Innovaciones , Predicción , Toxicología Forense , Ensayos Analíticos de Alto Rendimiento , Humanos , Espectrometría de Masas/tendencias , Reproducibilidad de los Resultados , Detección de Abuso de Sustancias , Toxicología/tendencias
9.
Phytopathology ; 105(3): 334-41, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25689622

RESUMEN

Fusarium head blight (FHB) is a devastating disease that causes significant reductions in yield and quality in wheat, rye, and triticale. In triticale, knowledge of the genetic architecture of FHB resistance is missing but essential due to modern breeding requirements. In our study, four doubled-haploid triticale populations (N=120 to 200) were evaluated for resistance to FHB caused by artificial inoculation with Fusarium culmorum in four environments. DArT markers were used to genotype triticale populations. Seventeen quantitative trait loci (QTL) for FHB resistance were detected across all populations; six of them were derived from rye genome and located on chromosomes 4R, 5R, and 7R, which are here reported for the first time. The total cross-validated ratio of the explained phenotypic variance for all detected QTL in each population was 41 to 68%. In all, 17 QTL for plant height and 18 QTL for heading stage were also detected across all populations; 3 and 5 of them, respectively, were overlapping with QTL for FHB. In conclusion, FHB resistance in triticale is caused by a multitude of QTL, and pyramiding them contributes to higher resistance.


Asunto(s)
Grano Comestible/genética , Fusarium/fisiología , Sitios de Carácter Cuantitativo , Grano Comestible/inmunología , Fenotipo
10.
Diabetes Obes Metab ; 16(2): 97-110, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23668396

RESUMEN

There is a growing body of evidence to support a connection between diabetes (predominantly type 2), obesity and cancer. Multiple meta-analyses of epidemiological data show that people with diabetes are at increased risk of developing many different types of cancers, along with an increased risk of cancer mortality. Several pathophysiological mechanisms for this relationship have been postulated, including insulin resistance and hyperinsulinaemia, enhanced inflammatory processes, dysregulation of sex hormone production and hyperglycaemia. In addition to these potential mechanisms, a number of common risk factors, including obesity, may be behind the association between diabetes and cancer. Indeed, obesity is associated with an increased risk of cancer and diabetes. Abdominal adiposity has been shown to play a role in creating a systemic pro-inflammatory environment, which could result in the development of both diabetes and cancer. Here, we examine the relationship between diabetes, obesity and cancer, and investigate the potential underlying causes of increased cancer risk in individuals with diabetes. Current treatment recommendations for reducing the overall disease burden are also explored and possible areas for future research are considered.


Asunto(s)
Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/etiología , Neoplasias/etiología , Obesidad/complicaciones , Obesidad/metabolismo , Diabetes Mellitus Tipo 2/prevención & control , Hormonas Esteroides Gonadales/metabolismo , Humanos , Hiperglucemia/complicaciones , Hiperglucemia/etiología , Hiperglucemia/prevención & control , Hiperinsulinismo/complicaciones , Hiperinsulinismo/etiología , Inflamación/complicaciones , Inflamación/etiología , Resistencia a la Insulina , Neoplasias/prevención & control , Obesidad/prevención & control , Obesidad Abdominal/complicaciones , Obesidad Abdominal/metabolismo , Prevalencia , Factores de Riesgo
13.
Clin Transl Gastroenterol ; 15(2): e00660, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38088370

RESUMEN

INTRODUCTION: The identification of risk factors for precursor lesions of colorectal cancer (CRC) holds great promise in the context of prevention. With this study, we aimed to identify patient characteristics associated with colorectal polyps (CPs) and polyp features of potential malignant progression. Furthermore, a potential association with gut microbiota in this context was investigated. METHODS: In this single-center study, a total of 162 patients with CPs and 91 control patients were included. Multiple variables including information on lifestyle, diet, serum parameters, and gut microbiota, analyzed by 16S-rRNA gene amplicon sequencing and functional imputations (Picrust2), were related to different aspects of CPs. RESULTS: We observed that elevated serum alkaline phosphatase (AP) levels were significantly associated with the presence of high-grade dysplastic polyps. This association was further seen for patients with CRC. Thereby, AP correlated with other parameters of liver function. We did not observe significant changes in the gut microbiota between patients with CP and their respective controls. However, a trend toward a lower alpha-diversity was seen in patients with CRC. Interestingly, AP was identified as a possible clinical effect modifier of stool sample beta diversity. DISCUSSION: We show for the first time an increased AP in premalignant CP. Furthermore, AP showed a significant influence on the microbial composition of the intestine. Relatively elevated liver enzymes, especially AP, may contribute to the detection of precancerous dysplastic or neoplastic changes in colorectal lesions. The association between elevated AP, premalignant CP, and the microbiome merits further study.


Asunto(s)
Pólipos del Colon , Neoplasias Colorrectales , Microbioma Gastrointestinal , Humanos , Neoplasias Colorrectales/genética , Pólipos del Colon/diagnóstico , Pólipos del Colon/patología , Bacterias , Heces , Microbioma Gastrointestinal/genética , Hiperplasia
14.
Eur J Surg Oncol ; : 108669, 2024 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-39362815

RESUMEN

BACKGROUND: The interest in artificial intelligence (AI) is increasing. Systematic reviews suggest that there are many machine learning algorithms in surgery, however, only a minority of the studies integrate AI applications in clinical workflows. Our objective was to design and evaluate a concept to use different kinds of AI for decision support in oncological liver surgery along the treatment path. METHODS: In an exploratory co-creation between design experts, surgeons, and data scientists, pain points along the treatment path were identified. Potential designs for AI-assisted solutions were developed and iteratively refined. Finally, an evaluation of the design concept was performed with n = 20 surgeons to get feedback on the different functionalities and evaluate the usability with the System Usability Scale (SUS). Participating surgeons had a mean of 14.0 ± 5.0 years of experience after graduation. RESULTS: The design concept was named "Aliado". Five different scenarios were identified where AI could support surgeons. Mean score of SUS was 68.2 ( ± 13.6 SD). The highest valued functionalities were "individualized prediction of survival, short-term mortality and morbidity", and "individualized recommendation of surgical strategy". CONCLUSION: Aliado is a design prototype that shows how AI could be integrated into the clinical workflow. Even without a fleshed out user interface, the SUS already yielded borderline good results. Expert surgeons rated the functionalities favorably, and most of them expressed their willingness to work with a similar application in the future. Thus, Aliado can serve as a surgical vision of how an ideal AI-based assistance could look like.

15.
Stem Cell Res Ther ; 15(1): 348, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39380035

RESUMEN

BACKGROUND: Vasoactive intestinal peptide (VIP) is a neuronal peptide with prominent distribution along the enteric nervous system. While effects of VIP on intestinal motility, mucosal vasodilation, secretion, and mucosal immune cell function are well-studied, the direct impact of VIP on intestinal epithelial cell turnover and differentiation remains less understood. Intestinal stem and progenitor cells are essential for the maintenance of intestinal homeostasis and regeneration, and their functions can be modulated by factors of the stem cell niche, including neuronal mediators. Here, we investigated the role of VIP in regulating intestinal epithelial homeostasis and regeneration following irradiation-induced injury. METHODS: Jejunal organoids were derived from male and female C57Bl6/J, Lgr5-EGFP-IRES-CreERT2 or Lgr5-EGFP-IRES-CreERT2/R26R-LSL-TdTomato mice and treated with VIP prior to analysis. Injury conditions were induced by exposing organoids to 6 Gy of irradiation (IR). To investigate protective effects of VIP in vivo, mice received 12 Gy of abdominal IR followed by intraperitoneal injections of VIP. RESULTS: We observed that VIP promotes epithelial differentiation towards a secretory phenotype predominantly via the p38 MAPK pathway. Moreover, VIP prominently modulated epithelial proliferation as well as the number and proliferative activity of Lgr5-EGFP+ progenitor cells under homeostatic conditions. In the context of acute irradiation injury in vitro, we observed that IR injury renders Lgr5-EGFP+ progenitor cells more susceptible to VIP-induced modulations, which coincided with the strong promotion of epithelial regeneration by VIP. Finally, the observed effects translate into an in vivo model of abdominal irradiation, where VIP showed to prominently mitigate radiation-induced injury. CONCLUSIONS: VIP prominently governs intestinal homeostasis by regulating epithelial progenitor cell proliferation and differentiation and promotes intestinal regeneration following acute irradiation injury.


Asunto(s)
Diferenciación Celular , Ratones Endogámicos C57BL , Péptido Intestinal Vasoactivo , Animales , Péptido Intestinal Vasoactivo/metabolismo , Péptido Intestinal Vasoactivo/farmacología , Ratones , Masculino , Femenino , Traumatismos por Radiación/metabolismo , Traumatismos por Radiación/patología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de la radiación , Mucosa Intestinal/patología , Organoides/metabolismo , Células Madre/metabolismo , Células Madre/efectos de los fármacos , Células Madre/efectos de la radiación
16.
bioRxiv ; 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38464029

RESUMEN

OBJECTIVE: Intraductal Papillary Mucinous Neoplasms (IPMNs) are cystic lesions and bona fide precursors for pancreatic ductal adenocarcinoma (PDAC). Recently, we showed that acinar to ductal metaplasia, an injury repair program, is characterized by a transcriptomic program similar to gastric spasmolytic polypeptide expressing metaplasia (SPEM), suggesting common mechanisms of reprogramming between the stomach and pancreas. The aims of this study were to assay IPMN for pyloric markers and to identify molecular drivers of this program. DESIGN: We analyzed RNA-seq studies of IPMN for pyloric markers, which were validated by immunostaining in patient samples. Cell lines expressing Kras G12D +/- GNAS R201C were manipulated to identify distinct and overlapping transcriptomic programs driven by each oncogene. A PyScenic-based regulon analysis was performed to identify molecular drivers in the pancreas. Expression of candidate drivers was evaluated by RNA-seq and immunostaining. RESULTS: Pyloric markers were identified in human IPMN. GNAS R201C drove expression of these markers in cell lines and siRNA targeting of GNAS R201C or Kras G12D demonstrates that GNAS R201C amplifies a mucinous, pyloric phenotype. Regulon analysis identified a role for transcription factors SPDEF, CREB3L1, and CREB3L4, which are expressed in patient samples. siRNA-targeting of Spdef inhibited mucin production. CONCLUSION: De novo expression of a SPEM phenotype has been identified in pancreatitis and a pyloric phenotype in Kras G12D -driven PanIN and Kras G12D ;GNAS R201C -driven IPMN, suggesting common mechanisms of reprogramming between these lesions and the stomach. A transition from a SPEM to pyloric phenotype may reflect disease progression and/or oncogenic mutation. IPMN-specific GNAS R201C amplifies a mucinous phenotype, in part, through SPDEF.

17.
Cancer Discov ; 14(2): 348-361, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-37966260

RESUMEN

The sparse vascularity of pancreatic ductal adenocarcinoma (PDAC) presents a mystery: What prevents this aggressive malignancy from undergoing neoangiogenesis to counteract hypoxia and better support growth? An incidental finding from prior work on paracrine communication between malignant PDAC cells and fibroblasts revealed that inhibition of the Hedgehog (HH) pathway partially relieved angiosuppression, increasing tumor vascularity through unknown mechanisms. Initial efforts to study this phenotype were hindered by difficulties replicating the complex interactions of multiple cell types in vitro. Here we identify a cascade of paracrine signals between multiple cell types that act sequentially to suppress angiogenesis in PDAC. Malignant epithelial cells promote HH signaling in fibroblasts, leading to inhibition of noncanonical WNT signaling in fibroblasts and epithelial cells, thereby limiting VEGFR2-dependent activation of endothelial hypersprouting. This cascade was elucidated using human and murine PDAC explant models, which effectively retain the complex cellular interactions of native tumor tissues. SIGNIFICANCE: We present a key mechanism of tumor angiosuppression, a process that sculpts the physiologic, cellular, and metabolic environment of PDAC. We further present a computational and experimental framework for the dissection of complex signaling cascades that propagate among multiple cell types in the tissue environment. This article is featured in Selected Articles from This Issue, p. 201.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Humanos , Ratones , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular , Proteínas Hedgehog/genética , Neoplasias Pancreáticas/patología , Factor A de Crecimiento Endotelial Vascular
18.
Heredity (Edinb) ; 110(1): 71-9, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23047199

RESUMEN

Family mapping is based on multiple segregating families and is becoming increasingly popular because of its advantages over population mapping. Athough much progress has been made recently, the optimum design and allocation of resources for family mapping remains unclear. Here, we addressed these issues using a simulation study, resample model averaging and cross-validation approaches. Our results show that in family mapping, the predictive power and the accuracy of quatitative trait loci (QTL) detection depend greatly on the population size and phenotyping intensity. With small population sizes or few test environments, QTL results become unreliable and are hampered by a large bias in the estimation of the proportion of genotypic variance explained by the detected QTL. In addition, we observed that even though good results can be achieved with low marker densities, no plateau is reached with our full marker complement. This suggests that higher quality results could be achieved with greater marker densities or sequence data, which will be available in the near future for many species.


Asunto(s)
Cruzamientos Genéticos , Genética de Población , Modelos Genéticos , Plantas/genética , Simulación por Computador , Estudios de Asociación Genética/métodos , Genotipo , Desequilibrio de Ligamiento , Sitios de Carácter Cuantitativo , Reproducibilidad de los Resultados , Semillas/genética
19.
Cancer Res ; 83(11): 1905-1916, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-36989344

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is believed to arise from the accumulation of a series of somatic mutations and is also frequently associated with pancreatic intraepithelial neoplasia (PanIN) lesions. However, there is still debate as to whether the cell type-of-origin of PanINs and PDACs in humans is acinar or ductal. As cell type identity is maintained epigenetically, DNA methylation changes during pancreatic neoplasia can provide a compelling perspective to examine this question. Here, we performed laser-capture microdissection on surgically resected specimens from 18 patients to isolate, with high purity, DNA for whole-genome bisulfite sequencing from four relevant cell types: acini, nonneoplastic ducts, PanIN lesions, and PDAC lesions. Differentially methylated regions (DMR) were identified using two complementary analytical approaches: bsseq, which identifies any DMRs but is particularly useful for large block-like DMRs, and informME, which profiles the potential energy landscape across the genome and is particularly useful for identifying differential methylation entropy. Both global methylation profiles and block DMRs clearly implicated an acinar origin for PanINs. At the gene level, PanIN lesions exhibited an intermediate acinar-ductal phenotype resembling acinar-to-ductal metaplasia. In 97.6% of PanIN-specific DMRs, PanIN lesions had an intermediate methylation level between normal and PDAC, which suggests from an information theory perspective that PanIN lesions are epigenetically primed to progress to PDAC. Thus, epigenomic analysis complements histopathology to define molecular progression toward PDAC. The shared epigenetic lineage between PanIN and PDAC lesions could provide an opportunity for prevention by targeting aberrantly methylated progression-related genes. SIGNIFICANCE: Analysis of DNA methylation landscapes provides insights into the cell-of-origin of PanIN lesions, clarifies the role of PanIN lesions as metaplastic precursors to human PDAC, and suggests potential targets for chemoprevention.


Asunto(s)
Carcinoma in Situ , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Metilación de ADN , Neoplasias Pancreáticas/patología , Carcinogénesis/genética , Carcinogénesis/patología , Carcinoma Ductal Pancreático/patología , Carcinoma in Situ/genética , Carcinoma in Situ/patología , Neoplasias Pancreáticas
20.
bioRxiv ; 2023 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-38234792

RESUMEN

Purpose: The CXCL12-CXCR4 chemokine axis plays a significant role in modulating T-cell infiltration into the pancreatic tumor microenvironment. Despite promising preclinical findings, clinical trials combining inhibitors of CXCR4 (AMD3100/BL-8040) and anti-programmed death 1/ligand1 (anti-PD1/PD-L1) have failed to improve outcomes. Experimental Design: We utilized a novel ex vivo autologous patient-derived immune/organoid (PDIO) co-culture system using human peripheral blood mononuclear cells and patient derived tumor organoids, and in vivo the autochthonous LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre (KPC) pancreatic cancer mouse model to interrogate the effects of either monotherapy or all combinations of gemcitabine, AMD3100, and anit-PD1 on CD8+ T cell activation and survival. Results: We demonstrate that disruption of the CXCL12-CXCR4 axis using AMD3100 leads to increased migration and activation of CD8+ T-cells. In addition, when combined with the cytotoxic chemotherapy gemcitabine, CXCR4 inhibition further potentiated CD8+ T-cell activation. We next tested the combination of gemcitabine, CXCR4 inhibition, and anti-PD1 in the KPC pancreatic cancer mouse model and demonstrate that this combination markedly impacted the tumor immune microenvironment by increasing infiltration of natural killer cells, the ratio of CD8+ to regulatory T-cells, and tumor cell death while decreasing tumor cell proliferation. Moreover, this combination extended survival in KPC mice. Conclusions: These findings suggest that combining gemcitabine with CXCR4 inhibiting agents and anti-PD1 therapy controls tumor growth by reducing immunosuppression and potentiating immune cell activation and therefore may represent a novel approach to treating pancreatic cancer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA