RESUMEN
Immune cells express receptors bearing an immune tyrosine activation motif (ITAM) containing two YXXL motifs or hemITAMs containing only one YXXL motif. Phosphorylation of the ITAM/hemITAM is mediated by Src family kinases allowing for the binding and activation of spleen tyrosine kinase (Syk). It is believed that Syk must be phosphorylated on tyrosine residues for activation, and Tyr342, а conserved tyrosine in the interdomain B region, has been shown to be critical for regulating Syk in FcεR1-activated mast cells. Syk is a key mediator of signaling pathways downstream of several platelet pathways including the ITAM bearing glycoprotein VI (GPVI)/Fc receptor gamma chain collagen receptor and the hemITAM containing C-type lectin-like receptor-2 (CLEC-2). Since platelet activation is a crucial step in both hemostasis and thrombosis, we evaluated the importance of Syk Y342 in these processes by producing an Syk Y342F knock-in mouse. When using a CLEC-2 antibody as an agonist, reduced aggregation and secretion were observed in Syk Y342F mouse platelets when compared with control mouse platelets. Platelet reactivity was also reduced in response to the GPVI agonist collagen-related peptide. Signaling initiated by either GPVI or CLEC-2 was also greatly inhibited, including Syk Y519/520 phosphorylation. Hemostasis, as measured by tail bleeding time, was not altered in Syk Y342F mice, but thrombus formation in response to FeCl3 injury was prolonged in Syk Y342F mice. These data demonstrate that phosphorylation of Y342 on Syk following stimulation of either GPVI or CLEC-2 receptors is important for the ability of Syk to transduce a signal.
Asunto(s)
Glicoproteínas de Membrana Plaquetaria , Quinasa Syk/metabolismo , Tirosina , Animales , Plaquetas/metabolismo , Lectinas Tipo C/genética , Lectinas Tipo C/metabolismo , Ratones , Fosforilación , Glicoproteínas de Membrana Plaquetaria/genética , Glicoproteínas de Membrana Plaquetaria/metabolismo , Receptores Inmunológicos/metabolismo , Quinasa Syk/genética , Tirosina/metabolismoRESUMEN
Platelets are key mediators of physiological hemostasis and pathological thrombosis, whose function must be carefully balanced by signaling downstream of receptors such as protease-activated receptor (PAR)4. Protein kinase C (PKC) is known to regulate various aspects of platelet function. For instance, PKCδ is known to regulate dense granule secretion, which is important for platelet activation. However, the mechanism by which PKCδ regulates this process as well as other facets of platelet activity is unknown. We speculated that the way PKCδ regulates platelet function may be because of the phosphorylation of tyrosine residues on PKCδ. We investigated phosphorylation of PKCδ following glycoprotein VI-mediated and PAR4-mediated platelet activation and found that Y311 is selectively phosphorylated when PAR4 is activated in human platelets. Therefore, we generated PKCδ Y311F knock-in mice, which are viable and have no gross abnormalities. However, PKCδY311F mice have significantly enhanced tail-bleeding times compared with WT littermate controls, which means hemostasis is interrupted. Furthermore, PKCδY311F mice exhibit longer time to carotid artery occlusion compared with WT control using a ferric chloride in vivo thrombosis model, indicating that the phosphorylation of PKCδ Y311 is prothrombotic. Washed platelets from PKCδY311F mice have reduced reactivity after stimulation with a PAR-4 agonist indicating its importance in platelet signaling. The phenotype observed in Y311F mouse platelets is because of reduced thromboxane generation, as an inhibitor of thromboxane generation equalizes the PKCδY311F platelet response to that of WT. Therefore, phosphorylation of PKCδ on Y311 is important for regulation of platelet function and specifically thromboxane generation, which reinforces platelet activation.
Asunto(s)
Plaquetas/metabolismo , Proteína Quinasa C-delta/química , Proteína Quinasa C-delta/metabolismo , Tromboxanos/biosíntesis , Tirosina/metabolismo , Animales , Humanos , Ratones , Modelos Moleculares , Fosforilación , Conformación ProteicaRESUMEN
Platelets are anucleate cells that mediate hemostasis. This occurs via a primary signal that is reinforced by secreted products such as ADP that bind purinergic receptors (P2Y1 and P2Y12) on the platelet surface. We recently identified a human subject, whom we termed platelet defect subject 25 (PDS25) with a platelet functional disorder associated with the P2Y12 receptor. PDS25 has normal blood cell counts and no history of bleeding diathesis. However, platelets from PDS25 have virtually no response to 2-MeSADP (a stable analogue of ADP). Genetic analysis of P2Y12 from PDS25 revealed a heterozygous mutation of D121N within the DRY motif. Rap1b activity was reduced in platelets from PDS25, while VASP phosphorylation was enhanced, suggesting that signaling from the P2Y12 receptor was interrupted by the heterozygous mutation. To explore this further, we produced knock-in mice that mimic our subject. Bleeding failed to cease in homozygous KI mice during tail bleeding assays, while tail bleeding times did not differ between WT and heterozygous KI mice. Furthermore, occlusions failed to form in most homozygous KI mice following carotid artery injury via FeCl3. These data indicate that the aspartic acid residue found in the DRY motif of P2Y12 is essential for P2Y12 function.
Asunto(s)
Plaquetas/metabolismo , Receptores Purinérgicos P2Y12/metabolismo , Adenosina Difosfato/metabolismo , Animales , Ácido Aspártico/metabolismo , Hemorragia/genética , Hemorragia/metabolismo , Humanos , Ratones , Agregación Plaquetaria , Pruebas de Función Plaquetaria , Antagonistas del Receptor Purinérgico P2Y/farmacología , Receptores Purinérgicos P2Y12/química , Receptores Purinérgicos P2Y12/genéticaRESUMEN
Platelet activation is essential for hemostasis. Central to platelet activation are the signals transmitted through surface receptors such as glycoprotein VI, the protease-activated receptors, and C-type lectin-like receptor 2 (CLEC-2). CLEC-2 is a HemITAM (hem-immunoreceptor tyrosine activation motif)-bearing receptor that binds podoplanin and signals through spleen tyrosine kinase (Syk). T-cell ubiquitin ligand-2 (TULA-2) is a protein tyrosine phosphatase that is highly expressed in platelets and targets phosphorylated Y352 of Syk. We wanted to determine whether TULA-2 regulates Syk phosphorylation and activity downstream of CLEC-2. To that end, we used TULA-2 knockout mice and wild-type (WT) littermate controls. We found that TULA-2 deficiency enhances the aggregation and secretion response following stimulation with an excitatory CLEC-2 antibody or the CLEC-2 agonist rhodocytin. Consistently, Syk phosphorylation of Y346 is enhanced, as well as phosphorylation of the downstream signaling molecule PLCγ2, in TULA-2 knockout platelets treated with either CLEC-2 antibody or rhodocytin, compared with WT control platelets. Furthermore, the kinetics of Syk phosphorylation, as well as that of PLCγ2 and SLP-76, is enhanced in TULA-2 knockout platelets treated with 2.5-µg/mL CLEC-2 antibody compared with WT platelets. Similarly, thromboxane production was enhanced, in both amount and kinetics, in TULA-2 -/- platelets treated with 2.5-µg/mL CLEC-2 antibody. TULA-2 acts as a negative regulator of CLEC-2 signaling by dephosphorylating Syk on Y346 and restraining subsequent Syk-mediated signaling.