Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 260
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Clin Transplant ; 38(4): e15302, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38567883

RESUMEN

INTRODUCTION: As the adult Fontan population with Fontan associated liver disease continues to increase, more patients are being referred for transplantation, including combined heart and liver transplantation. METHODS: We report updated mortality and morbidity outcomes after combined heart and liver transplant in a retrospective cohort series of 40 patients (age 14 to 49 years) with Fontan circulation across two centers from 2006-2022. RESULTS: The 30-day, 1-year, 5-year and 10-year survival rate was 90%, 80%, 73% and 73% respectively. Sixty percent of patients met a composite comorbidity of needing either post-transplant mechanical circulatory support, renal replacement therapy or tracheostomy. Cardiopulmonary bypass time > 283 min (4.7 h) and meeting the composite comorbidity were associated with mortality by Kaplan Meier analysis. CONCLUSION: Further study to mitigate early mortality and the above comorbidities as well as the high risk of bleeding and vasoplegia in this patient population is warranted.


Asunto(s)
Cardiopatías Congénitas , Trasplante de Corazón , Hepatopatías , Trasplante de Hígado , Adulto , Humanos , Adolescente , Adulto Joven , Persona de Mediana Edad , Trasplante de Hígado/efectos adversos , Estudios Retrospectivos , Hepatopatías/cirugía , Morbilidad , Cardiopatías Congénitas/cirugía
2.
Neurocrit Care ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811513

RESUMEN

Despite improvements in survival after illnesses requiring extracorporeal life support, cerebral injury continues to hinder successful outcomes. Cerebral autoregulation (CA) is an innate protective mechanism that maintains constant cerebral blood flow in the face of varying systemic blood pressure. However, it is impaired in certain disease states and, potentially, following initiation of extracorporeal circulatory support. In this review, we first discuss patient-related factors pertaining to venovenous and venoarterial extracorporeal membrane oxygenation (ECMO) and their potential role in CA impairment. Next, we examine factors intrinsic to ECMO that may affect CA, such as cannulation, changes in pulsatility, the inflammatory and adaptive immune response, intracranial hemorrhage, and ischemic stroke, in addition to ECMO management factors, such as oxygenation, ventilation, flow rates, and blood pressure management. We highlight potential mechanisms that lead to disruption of CA in both pediatric and adult populations, the challenges of measuring CA in these patients, and potential associations with neurological outcome. Altogether, we discuss individualized CA monitoring as a potential target for improving neurological outcomes in extracorporeal life support.

3.
Cardiol Young ; : 1-3, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38801130

RESUMEN

Congenital coronary artery stenosis coexisting with aortic coarctation in nonsyndromic patients has not previously been reported. This report describes a nonsyndromic aortic coarctation patient who experienced intraoperative cardiac arrest due to a previously undiagnosed critical left main coronary artery stenosis. The patient was successfully resuscitated, underwent patch coronary ostioplasty, and was discharged home. He remains well for four months following repair.

4.
Int J Mol Sci ; 25(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38791504

RESUMEN

Optimal oxygen management during pediatric cardiopulmonary bypass (CPB) is unknown. We previously demonstrated an increase in cortical mitochondrial reactive oxygen species and decreased mitochondrial function after CPB using hyperoxic oxygen management. This study investigates whether controlled oxygenation (normoxia) during CPB reduces cortical mitochondrial dysfunction and oxidative injury. Ten neonatal swine underwent three hours of continuous CPB at 34 °C (flow > 100 mL/kg/min) via cervical cannulation targeting a partial pressure of arterial oxygen (PaO2) goal < 150 mmHg (normoxia, n = 5) or >300 mmHg (hyperoxia, n = 5). The animals underwent continuous hemodynamic monitoring and serial arterial blood sampling. Cortical microdialysate was serially sampled to quantify the glycerol concentration (represents neuronal injury) and lactate-to-pyruvate ratio (represents bioenergetic dysfunction). The cortical tissue was analyzed via high-resolution respirometry to quantify mitochondrial oxygen consumption and reactive oxygen species generation, and cortical oxidized protein carbonyl concentrations were quantified to assess for oxidative damage. Serum PaO2 was higher in hyperoxia animals throughout CPB (p < 0.001). There were no differences in cortical glycerol concentration between groups (p > 0.2). The cortical lactate-to-pyruvate ratio was modestly elevated in hyperoxia animals (p < 0.03) but the values were not clinically significant (<30). There were no differences in cortical mitochondrial respiration (p = 0.48), protein carbonyls (p = 0.74), or reactive oxygen species generation (p = 0.93) between groups. Controlled oxygenation during CPB does not significantly affect cortical mitochondrial function or oxidative injury in the acute setting. Further evaluation of the short and long-term effects of oxygen level titration during pediatric CPB on cortical tissue and other at-risk brain regions are needed, especially in the presence of cyanosis.


Asunto(s)
Animales Recién Nacidos , Puente Cardiopulmonar , Mitocondrias , Oxígeno , Especies Reactivas de Oxígeno , Animales , Porcinos , Puente Cardiopulmonar/efectos adversos , Puente Cardiopulmonar/métodos , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Oxígeno/metabolismo , Consumo de Oxígeno , Ácido Láctico/metabolismo , Ácido Láctico/sangre , Estrés Oxidativo , Corteza Cerebral/metabolismo , Ácido Pirúvico/metabolismo , Hiperoxia/metabolismo
5.
Cardiol Young ; 33(12): 2667-2669, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37807723

RESUMEN

We report a case of hypoplastic left heart syndrome and with subsequent aortopathy and then found to have hereditary haemorrhagic telangiectasia/juvenile polyposis syndrome due to a germline SMAD4 pathologic variant. The patient's staged palliation was complicated by the development of neoaortic aneurysms, arteriovenous malformations, and gastrointestinal bleeding thought to be secondary to Fontan circulation, but workup revealed a SMAD4 variant consistent with hereditary haemorrhagic telangiectasia/juvenile polyposis syndrome. This case underscores the importance of genetic modifiers in CHD, especially those with Fontan physiology.


Asunto(s)
Cardiopatías , Telangiectasia Hemorrágica Hereditaria , Corazón Univentricular , Humanos , Telangiectasia Hemorrágica Hereditaria/complicaciones , Telangiectasia Hemorrágica Hereditaria/diagnóstico , Telangiectasia Hemorrágica Hereditaria/genética , Corazón Univentricular/complicaciones , Mutación , Cardiopatías/complicaciones , Proteína Smad4/genética
6.
J Extra Corpor Technol ; 55(3): 112-120, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37682209

RESUMEN

BACKGROUND: Acute kidney injury after pediatric cardiac surgery is a common complication with few established modifiable risk factors. We sought to characterize whether indexed oxygen delivery during cardiopulmonary bypass was associated with postoperative acute kidney injury in a large pediatric cohort. METHODS: This was a retrospective analysis of patients under 1 year old undergoing cardiac surgery with cardiopulmonary bypass between January 1, 2013, and January 1, 2020. Receiver operating characteristic curves across values ranging from 260 to 400 mL/min/m2 were used to identify the indexed oxygen delivery most significantly associated with acute kidney injury risk. RESULTS: We included 980 patients with acute kidney injury occurring in 212 (21.2%). After adjusting for covariates associated with acute kidney injury, an indexed oxygen delivery threshold of 340 mL/min/m2 predicted acute kidney injury in STAT 4 and 5 neonates (area under the curve = 0.66, 95% CI = 0.60 - 0.72, sensitivity = 56.1%, specificity = 69.4%). An indexed oxygen delivery threshold of 400 mL/min/m2 predicted acute kidney injury in STAT 1-3 infants (area under the curve = 0.65, 95% CI = 0.58 - 0.72, sensitivity = 52.6%, specificity = 74.6%). CONCLUSION: Indexed oxygen delivery during cardiopulmonary bypass is a modifiable variable independently associated with postoperative acute kidney injury in specific pediatric populations. Strategies aimed at maintaining oxygen delivery greater than 340 mL/min/m2 in complex neonates and greater than 400 mL/min/m2 in infants may reduce the occurrence of postoperative acute kidney injury in the pediatric population.


Asunto(s)
Lesión Renal Aguda , Puente Cardiopulmonar , Lactante , Recién Nacido , Humanos , Niño , Puente Cardiopulmonar/efectos adversos , Estudios Retrospectivos , Lesión Renal Aguda/etiología , Lesión Renal Aguda/prevención & control , Factores de Riesgo , Oxígeno
7.
Pediatr Res ; 91(6): 1374-1382, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33947997

RESUMEN

BACKGROUND: Cerebral autoregulation mechanisms help maintain adequate cerebral blood flow (CBF) despite changes in cerebral perfusion pressure. Impairment of cerebral autoregulation, during and after cardiopulmonary bypass (CPB), may increase risk of neurologic injury in neonates undergoing surgery. In this study, alterations of cerebral autoregulation were assessed in a neonatal swine model probing four perfusion strategies. METHODS: Neonatal swine (n = 25) were randomized to continuous deep hypothermic cardiopulmonary bypass (DH-CPB, n = 7), deep hypothermic circulatory arrest (DHCA, n = 7), selective cerebral perfusion (SCP, n = 7) at deep hypothermia, or normothermic cardiopulmonary bypass (control, n = 4). The correlation coefficient (LDx) between laser Doppler measurements of CBF and mean arterial blood pressure was computed at initiation and conclusion of CPB. Alterations in cerebral autoregulation were assessed by the change between initial and final LDx measurements. RESULTS: Cerebral autoregulation became more impaired (LDx increased) in piglets that underwent DH-CPB (initial LDx: median 0.15, IQR [0.03, 0.26]; final: 0.45, [0.27, 0.74]; p = 0.02). LDx was not altered in those undergoing DHCA (p > 0.99) or SCP (p = 0.13). These differences were not explained by other risk factors. CONCLUSIONS: In a validated swine model of cardiac surgery, DH-CPB had a significant effect on cerebral autoregulation, whereas DHCA and SCP did not. IMPACT: Approximately half of the patients who survive neonatal heart surgery with cardiopulmonary bypass (CPB) experience neurodevelopmental delays. This preclinical investigation takes steps to elucidate and isolate potential perioperative risk factors of neurologic injury, such as impairment of cerebral autoregulation, associated with cardiac surgical procedures involving CPB. We demonstrate a method to characterize cerebral autoregulation during CPB pump flow changes in a neonatal swine model of cardiac surgery. Cerebral autoregulation was not altered in piglets that underwent deep hypothermic circulatory arrest (DHCA) or selective cerebral perfusion (SCP), but it was altered in piglets that underwent deep hypothermic CBP.


Asunto(s)
Puente Cardiopulmonar , Hipotermia Inducida , Animales , Animales Recién Nacidos , Puente Cardiopulmonar/efectos adversos , Circulación Cerebrovascular , Homeostasis , Porcinos
8.
Cardiol Young ; 32(10): 1541-1543, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36217676

RESUMEN

The Editorial Board of Cardiology in the Young has recently discussed the need for a Bioethics Forum and has given authorisation to proceed with its creation. Herein, we provide the organisational structure and launch process to introduce properly this interesting and timely endeavour. By this communication, we are establishing this Bioethics Forum of Cardiology in the Young . We hope to attract manuscripts concerning timely bioethical subjects and to offer the readership the opportunity to respond to these topics with supporting or opposing views as appropriate. New articles regarding timely topics will be written by the readership, as well as by invited authors, and these articles will be published. We hope to stimulate interactive discussion concerning the published manuscripts, and these manuscripts and the associated discussions will be open to all interested parties.


Asunto(s)
Bioética , Cardiología , Humanos
9.
Cardiol Young ; 32(8): 1350-1352, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35801646

RESUMEN

Venous aneurysms are an atypical presentation of neck masses in the paediatric population. The evaluation and surgical removal of internal jugular vein phlebectasia and a lipoma coexisting are described in this report. Internal jugular vein phlebectasia is theorised as a congenital defect and is becoming more common with advancing imaging technologies. Both phlebectasia and lipomas are considered benign conditions, but clinicians must be aware of tumours producing mass effect.


Asunto(s)
Cardiopatías , Lipoma , Venas Braquiocefálicas , Niño , Dilatación Patológica , Humanos , Venas Yugulares/diagnóstico por imagen , Lipoma/diagnóstico , Lipoma/diagnóstico por imagen
10.
Cardiol Young ; 31(7): 1057-1188, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34323211

RESUMEN

Substantial progress has been made in the standardization of nomenclature for paediatric and congenital cardiac care. In 1936, Maude Abbott published her Atlas of Congenital Cardiac Disease, which was the first formal attempt to classify congenital heart disease. The International Paediatric and Congenital Cardiac Code (IPCCC) is now utilized worldwide and has most recently become the paediatric and congenital cardiac component of the Eleventh Revision of the International Classification of Diseases (ICD-11). The most recent publication of the IPCCC was in 2017. This manuscript provides an updated 2021 version of the IPCCC.The International Society for Nomenclature of Paediatric and Congenital Heart Disease (ISNPCHD), in collaboration with the World Health Organization (WHO), developed the paediatric and congenital cardiac nomenclature that is now within the eleventh version of the International Classification of Diseases (ICD-11). This unification of IPCCC and ICD-11 is the IPCCC ICD-11 Nomenclature and is the first time that the clinical nomenclature for paediatric and congenital cardiac care and the administrative nomenclature for paediatric and congenital cardiac care are harmonized. The resultant congenital cardiac component of ICD-11 was increased from 29 congenital cardiac codes in ICD-9 and 73 congenital cardiac codes in ICD-10 to 318 codes submitted by ISNPCHD through 2018 for incorporation into ICD-11. After these 318 terms were incorporated into ICD-11 in 2018, the WHO ICD-11 team added an additional 49 terms, some of which are acceptable legacy terms from ICD-10, while others provide greater granularity than the ISNPCHD thought was originally acceptable. Thus, the total number of paediatric and congenital cardiac terms in ICD-11 is 367. In this manuscript, we describe and review the terminology, hierarchy, and definitions of the IPCCC ICD-11 Nomenclature. This article, therefore, presents a global system of nomenclature for paediatric and congenital cardiac care that unifies clinical and administrative nomenclature.The members of ISNPCHD realize that the nomenclature published in this manuscript will continue to evolve. The version of the IPCCC that was published in 2017 has evolved and changed, and it is now replaced by this 2021 version. In the future, ISNPCHD will again publish updated versions of IPCCC, as IPCCC continues to evolve.


Asunto(s)
Cardiopatías Congénitas , Clasificación Internacional de Enfermedades , Niño , Femenino , Humanos , Sistema de Registros , Sociedades Médicas , Organización Mundial de la Salud
11.
Pediatr Res ; 88(6): 925-933, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32172282

RESUMEN

BACKGROUND: Extra-corporeal membrane oxygenation (ECMO) is a life-saving intervention for severe respiratory and cardiac diseases. However, 50% of survivors have abnormal neurologic exams. Current ECMO management is guided by systemic metrics, which may poorly predict cerebral perfusion. Continuous optical monitoring of cerebral hemodynamics during ECMO holds potential to detect risk factors of brain injury such as impaired cerebrovascular autoregulation (CA). METHODS: We conducted daily measurements of microvascular cerebral blood flow (CBF), oxygen saturation, and total hemoglobin concentration using diffuse correlation spectroscopy (DCS) and frequency-domain diffuse optical spectroscopy in nine neonates. We characterize CA utilizing the correlation coefficient (DCSx) between CBF and mean arterial blood pressure (MAP) during ECMO pump flow changes. RESULTS: Average MAP and pump flow levels were weakly correlated with CBF and were not correlated with cerebral oxygen saturation. CA integrity varied between individuals and with time. Systemic measurements of MAP, pulse pressure, and left cardiac dysfunction were not predictive of impaired CA. CONCLUSIONS: Our pilot results suggest that systemic measures alone cannot distinguish impaired CA from intact CA during ECMO. Furthermore, optical neuromonitoring could help determine patient-specific ECMO pump flows for optimal CA integrity, thereby reducing risk of secondary brain injury. IMPACT: Cerebral blood flow and oxygenation are not well predicted by systemic proxies such as ECMO pump flow or blood pressure. Continuous, quantitative, bedside monitoring of cerebral blood flow and oxygenation with optical tools enables new insight into the adequacy of cerebral perfusion during ECMO. A demonstration of hybrid diffuse optical and correlation spectroscopies to continuously measure cerebral blood oxygen saturation and flow in patients on ECMO, enabling assessment of cerebral autoregulation. An observation of poor correlation of cerebral blood flow and oxygenation with systemic mean arterial pressure and ECMO pump flow, suggesting that clinical decision making guided by target values for these surrogates may not be neuroprotective. ~50% of ECMO survivors have long-term neurological deficiencies; continuous monitoring of brain health throughout therapy may reduce these tragically common sequelae through brain-focused adjustment of ECMO parameters.


Asunto(s)
Encéfalo/fisiopatología , Circulación Cerebrovascular , Oxigenación por Membrana Extracorpórea/métodos , Hemodinámica , Microcirculación , Oxígeno/metabolismo , Presión Sanguínea , Lesiones Encefálicas/fisiopatología , Homeostasis/fisiología , Humanos , Proyectos Piloto , Reproducibilidad de los Resultados , Riesgo , Factores de Riesgo , Dispersión de Radiación , Espectrofotometría , Espectroscopía Infrarroja Corta/métodos , Resultado del Tratamiento
12.
Crit Care ; 24(1): 583, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32993753

RESUMEN

BACKGROUND: Despite controversies, epinephrine remains a mainstay of cardiopulmonary resuscitation (CPR). Recent animal studies have suggested that epinephrine may decrease cerebral blood flow (CBF) and cerebral oxygenation, possibly potentiating neurological injury during CPR. We investigated the cerebrovascular effects of intravenous epinephrine in a swine model of pediatric in-hospital cardiac arrest. The primary objectives of this study were to determine if (1) epinephrine doses have a significant acute effect on CBF and cerebral tissue oxygenation during CPR and (2) if the effect of each subsequent dose of epinephrine differs significantly from that of the first. METHODS: One-month-old piglets (n = 20) underwent asphyxia for 7 min, ventricular fibrillation, and CPR for 10-20 min. Epinephrine (20 mcg/kg) was administered at 2, 6, 10, 14, and 18 min of CPR. Invasive (laser Doppler, brain tissue oxygen tension [PbtO2]) and noninvasive (diffuse correlation spectroscopy and diffuse optical spectroscopy) measurements of CBF and cerebral tissue oxygenation were simultaneously recorded. Effects of subsequent epinephrine doses were compared to the first. RESULTS: With the first epinephrine dose during CPR, CBF and cerebral tissue oxygenation increased by > 10%, as measured by each of the invasive and noninvasive measures (p < 0.001). The effects of epinephrine on CBF and cerebral tissue oxygenation decreased with subsequent doses. By the fifth dose of epinephrine, there were no demonstrable increases in CBF of cerebral tissue oxygenation. Invasive and noninvasive CBF measurements were highly correlated during asphyxia (slope effect 1.3, p < 0.001) and CPR (slope effect 0.20, p < 0.001). CONCLUSIONS: This model suggests that epinephrine increases CBF and cerebral tissue oxygenation, but that effects wane following the third dose. Noninvasive measurements of neurological health parameters hold promise for developing and directing resuscitation strategies.


Asunto(s)
Reanimación Cardiopulmonar/métodos , Trastornos Cerebrovasculares/tratamiento farmacológico , Epinefrina/farmacología , Hemodinámica/efectos de los fármacos , Animales , Análisis de los Gases de la Sangre/métodos , Presión Sanguínea/efectos de los fármacos , Reanimación Cardiopulmonar/instrumentación , Reanimación Cardiopulmonar/normas , Trastornos Cerebrovasculares/fisiopatología , Modelos Animales de Enfermedad , Epinefrina/uso terapéutico , Hemodinámica/fisiología , Porcinos
13.
Crit Care Med ; 47(3): e241-e249, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30779720

RESUMEN

OBJECTIVES: Less than half of the thousands of children who suffer in-hospital cardiac arrests annually survive, and neurologic injury is common among survivors. Hemodynamic-directed cardiopulmonary resuscitation improves short-term survival, but its impact on longer term survival and mitochondrial respiration-a potential neurotherapeutic target-remains unknown. The primary objectives of this study were to compare rates of 24-hour survival with favorable neurologic outcome after cardiac arrest treated with hemodynamic-directed cardiopulmonary resuscitation versus standard depth-guided cardiopulmonary resuscitation and to compare brain and heart mitochondrial respiration between groups 24 hours after resuscitation. DESIGN: Randomized preclinical large animal trial. SETTING: A large animal resuscitation laboratory at a large academic children's hospital. SUBJECTS: Twenty-eight 4-week-old female piglets (8-11 kg). INTERVENTIONS: Twenty-two swine underwent 7 minutes of asphyxia followed by ventricular fibrillation and randomized treatment with either hemodynamic-directed cardiopulmonary resuscitation (n = 10; compression depth titrated to aortic systolic pressure of 90 mm Hg, vasopressors titrated to coronary perfusion pressure ≥ 20 mm Hg) or depth-guided cardiopulmonary resuscitation (n = 12; depth 1/3 chest diameter, epinephrine every 4 min). Six animals (sham group) underwent anesthesia and instrumentation without cardiac arrest. The primary outcomes were favorable neurologic outcome (swine Cerebral Performance Category ≤ 2) and mitochondrial maximal oxidative phosphorylation utilizing substrate for complex I and complex II (OXPHOSCI+CII) in the cerebral cortex and hippocampus. MEASUREMENTS AND MAIN RESULTS: Favorable neurologic outcome was more likely with hemodynamic-directed cardiopulmonary resuscitation (7/10) than depth-guided cardiopulmonary resuscitation (1/12; p = 0.006). Hemodynamic-directed cardiopulmonary resuscitation resulted in higher intra-arrest coronary perfusion pressure, aortic pressures, and brain tissue oxygenation. Hemodynamic-directed cardiopulmonary resuscitation resulted in higher OXPHOSCI+CII (pmol oxygen/s × mg/citrate synthase) in the cortex (6.00 ± 0.28 vs 3.88 ± 0.43; p < 0.05) and hippocampus (6.26 ± 0.67 vs 3.55 ± 0.65; p < 0.05) and higher complex I respiration (pmol oxygen/s × mg) in the right (20.62 ± 1.06 vs 15.88 ± 0.81; p < 0.05) and left ventricles (20.14 ± 1.40 vs 14.17 ± 1.53; p < 0.05). CONCLUSIONS: In a model of asphyxia-associated pediatric cardiac arrest, hemodynamic-directed cardiopulmonary resuscitation increases rates of 24-hour survival with favorable neurologic outcome, intra-arrest hemodynamics, and cerebral and myocardial mitochondrial respiration.


Asunto(s)
Encéfalo , Reanimación Cardiopulmonar , Hemodinámica , Mitocondrias Cardíacas , Mitocondrias , Animales , Femenino , Encéfalo/metabolismo , Reanimación Cardiopulmonar/métodos , Modelos Animales de Enfermedad , Paro Cardíaco/terapia , Mitocondrias/metabolismo , Mitocondrias Cardíacas/metabolismo , Porcinos , Resultado del Tratamiento
14.
Am J Respir Crit Care Med ; 197(7): 905-912, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29244522

RESUMEN

RATIONALE: Many in-hospital cardiac arrests are precipitated by hypotension, often associated with systemic inflammation. These patients are less likely to be successfully resuscitated, and novel approaches to their treatment are needed. OBJECTIVES: To determine if the addition of inhaled nitric oxide (iNO) to hemodynamic-directed cardiopulmonary resuscitation (HD-CPR) would improve short-term survival from cardiac arrest associated with shock and systemic inflammation. METHODS: In 3-month-old swine (n = 21), LPS was intravenously infused, inducing systemic hypotension. Ventricular fibrillation was induced, and animals were randomized to blinded treatment with either: 1) HD-CPR with iNO, or 2) HD-CPR without iNO. During HD-CPR, chest compression depth was titrated to peak aortic compression pressure of 100 mm Hg, and vasopressor administration was titrated to coronary perfusion pressure greater than or equal to 20 mm Hg. Defibrillation attempts began after 10 minutes of resuscitation. The primary outcome was 45-minute survival. MEASUREMENTS AND MAIN RESULTS: The iNO group had higher rates of 45-minute survival (10 of 10 vs. 3 of 11; P = 0.001). During cardiopulmonary resuscitation, the iNO group had lower pulmonary artery relaxation pressure (mean ± SEM, 10.9 ± 2.4 vs. 18.4 ± 2.4 mm Hg; P = 0.03), higher coronary perfusion pressure (21.1 ± 1.5 vs. 16.9 ± 1.0 mm Hg; P = 0.005), and higher aortic relaxation pressure (36.6 ± 1.6 vs. 30.4 ± 1.1 mm Hg; P < 0.001) despite shallower chest compressions (5.88 ± 0.25 vs. 6.46 ± 0.40 cm; P = 0.02) and fewer vasopressor doses in the first 10 minutes (median, 4 [interquartile range, 3-4] vs. 5 [interquartile range, 5-6], P = 0.03). CONCLUSIONS: The addition of iNO to HD-CPR in LPS-induced shock-associated cardiac arrest improved short-term survival and intraarrest hemodynamics.


Asunto(s)
Reanimación Cardiopulmonar/métodos , Paro Cardíaco/etiología , Paro Cardíaco/terapia , Óxido Nítrico/uso terapéutico , Choque/complicaciones , Vasodilatadores/uso terapéutico , Animales , Terapia Combinada/métodos , Modelos Animales de Enfermedad , Depuradores de Radicales Libres/uso terapéutico , Porcinos
15.
Cardiol Young ; 28(1): 39-45, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28927471

RESUMEN

BACKGROUND: We have previously shown that the minor alleles of vascular endothelial growth factor A (VEGFA) single-nucleotide polymorphism rs833069 and superoxide dismutase 2 (SOD2) single-nucleotide polymorphism rs2758331 are both associated with improved transplant-free survival after surgery for CHD in infants, but the underlying mechanisms are unknown. We hypothesised that one or both of these minor alleles are associated with better systemic ventricular function, resulting in improved survival. METHODS: This study is a follow-up analysis of 422 non-syndromic CHD patients who underwent neonatal cardiac surgery with cardiopulmonary bypass. Echocardiographic reports were reviewed. Systemic ventricular function was subjectively categorised as normal, or as mildly, moderately, or severely depressed. The change in function was calculated as the change from the preoperative study to the last available study. Stepwise linear regression, adjusting for covariates, was performed for the outcome of change in ventricular function. Model comparison was performed using Akaike's information criterion. Only variables that improved the model prediction of change in systemic ventricular function were retained in the final model. RESULTS: Genetic and echocardiographic data were available for 335/422 subjects (79%). Of them, 33 (9.9%) developed worse systemic ventricular function during a mean follow-up period of 13.5 years. After covariate adjustment, the presence of the VEGFA minor allele was associated with preserved ventricular function (p=0.011). CONCLUSIONS: These data support the hypothesis that the mechanism by which the VEGFA single-nucleotide polymorphism rs833069 minor allele improves survival may be the preservation of ventricular function. Further studies are needed to validate this genotype-phenotype association and to determine whether this mechanism is related to increased vascular endothelial growth factor production.


Asunto(s)
Cardiopatías Congénitas/genética , Cardiopatías Congénitas/cirugía , Factor A de Crecimiento Endotelial Vascular/genética , Adolescente , Alelos , Procedimientos Quirúrgicos Cardíacos/estadística & datos numéricos , Niño , Preescolar , Ecocardiografía , Femenino , Estudios de Seguimiento , Trasplante de Corazón , Humanos , Lactante , Recién Nacido , Modelos Lineales , Masculino , Philadelphia , Polimorfismo de Nucleótido Simple , Función Ventricular
18.
Cardiol Young ; 27(8): 1538-1544, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28460658

RESUMEN

Anomalous aortic origin of the coronary arteries is associated with exercise-induced ischaemia, leading some physicians to restrict exercise in patients with this condition. We sought to determine whether exercise restriction was associated with increasing body mass index over time. From 1998 to 2015, 440 patients ⩽30 years old were enrolled into an inception cohort. Exercise-restriction status was documented in 143 patients. Using linear mixed model repeated-measures regression, factors associated with increasing body mass index z-score over time, including exercise restriction and surgical intervention as time-varying covariates, were investigated. The 143 patients attended 558 clinic visits for which exercise-restriction status was recorded. The mean number of clinic visits per patient was 4, and the median duration of follow-up was 1.7 years (interquartile range (IQR) 0.5-4.4). The median age at first clinic visit was 10.3 years (IQR 7.1-13.9), and 71% (101/143) were males. All patients were alive at their most recent follow-up. At the first clinic visit, 54% (78/143) were exercise restricted, and restriction status changed in 34% (48/143) during follow-up. The median baseline body mass index z-score was 0.2 (IQR 0.3-0.9). In repeated-measures analysis, neither time-related exercise restriction nor its interaction with time was associated with increasing body mass index z-score. Surgical intervention and its interaction with time were associated with decreasing body mass index z-score. Although exercise restriction was not associated with increasing body mass index over time, surgical intervention was associated with decreasing body mass index z-score over time in patients with anomalous aortic origin of the coronary arteries.


Asunto(s)
Aorta Torácica/anomalías , Índice de Masa Corporal , Anomalías de los Vasos Coronarios/rehabilitación , Terapia por Ejercicio/métodos , Tolerancia al Ejercicio/fisiología , Adolescente , Adulto , Niño , Anomalías de los Vasos Coronarios/fisiopatología , Femenino , Estudios de Seguimiento , Humanos , Masculino , Estudios Retrospectivos , Factores de Tiempo , Adulto Joven
19.
Cardiol Young ; 26(8): 1573-1580, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28148333

RESUMEN

A 9-year-old boy who was born with bicuspid aortic stenosis underwent two unsuccessful aortic valvuloplasty interventions, and by 2 years of age he developed restrictive cardiomyopathy caused by left ventricular endocardial fibroelastosis and diastolic dysfunction. The attending cardiologist referred the patient to a high-volume, high-profile congenital cardiac surgical programme 1000 miles away that has a team with considerable experience with left ventricular endocardial fibroelastosis resection and a reputation of achieving good results. Owing to problems with insurance coverage, the parents sought other options for the care of their child in their home state. Dr George Miller is a well-respected local congenital and paediatric cardiac surgeon with considerable experience with the Ross operation as well as with right ventricular endocardial fibroelastosis resection. When talking with Dr Miller, he implied that there is little difference between right ventricular endocardial fibroelastosis and left ventricular endocardial fibroelastosis resection, and stated that he would perform the operation with low mortality based on his overall experience. Dr Miller stated that the local institution could provide an equivalent surgical procedure with comparable outcomes, without the patient and family having to travel out of state. A fundamental dilemma that often arises in clinical surgical practice concerns the conduct of assessing and performing new procedures, especially in rare cases, for which the collective global experience is scant. Although Dr Miller has performed right ventricular endocardial fibroelastosis resection, this procedure differs from left ventricular endocardial fibroelastosis resection, and he cannot be sure that he will indeed be able to perform the procedure better than the high-volume surgeon. This ethical situation is best understood in terms of the principles of respect for patient autonomy, beneficence, non-maleficence, and justice. The tension between the imperatives of beneficence and the obligation to respect the autonomy of the patient by acting only with the patient's best interest in mind is discussed.


Asunto(s)
Estenosis de la Válvula Aórtica/cirugía , Procedimientos Quirúrgicos Cardíacos/métodos , Toma de Decisiones/ética , Fibroelastosis Endocárdica/cirugía , Consentimiento Informado/ética , Derechos del Paciente/ética , Relaciones Médico-Paciente/ética , Niño , Ecocardiografía , Humanos , Masculino
20.
Cardiol Young ; 25(8): 1546-60, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26675603

RESUMEN

Anomalous aortic origins of the coronary arteries comprise approximately one-third of all coronary artery anomalies and are characterised by coronary arteries with anomalies of aortic origin involving abnormal courses, stenoses, and compression that can lead to myocardial ischaemia and sudden death. Operative techniques to treat these anomalies have not been standardised yet. Moreover, the management of potential complications has not been addressed. Common and rare forms of anomalous aortic origins of the coronary arteries are reviewed and understood standard techniques for an uncomplicated unroofing procedure are illustrated. Also noted are techniques that can be applied to unexpected anatomical findings and unwanted complications that could prove to be life-threatening. Several technical recommendations are offered.


Asunto(s)
Aorta Torácica/anomalías , Aorta Torácica/cirugía , Procedimientos Quirúrgicos Cardíacos/métodos , Anomalías de los Vasos Coronarios/cirugía , Seno Aórtico/cirugía , Humanos , Complicaciones Posoperatorias , Seno Aórtico/anomalías
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA