Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Brain ; 144(3): 909-923, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33638639

RESUMEN

Early-onset torsion dystonia (TOR1A/DYT1) is a devastating hereditary motor disorder whose pathophysiology remains unclear. Studies in transgenic mice suggested abnormal cholinergic transmission in the putamen, but this has not yet been demonstrated in humans. The role of the cerebellum in the pathophysiology of the disease has also been highlighted but the involvement of the intrinsic cerebellar cholinergic system is unknown. In this study, cholinergic neurons were imaged using PET with 18F-fluoroethoxybenzovesamicol, a radioligand of the vesicular acetylcholine transporter (VAChT). Here, we found an age-related decrease in VAChT expression in the posterior putamen and caudate nucleus of DYT1 patients versus matched controls, with low expression in young but not in older patients. In the cerebellar vermis, VAChT expression was also significantly decreased in patients versus controls, but independently of age. Functional connectivity within the motor network studied in MRI and the interregional correlation of VAChT expression studied in PET were also altered in patients. These results show that the cholinergic system is disrupted in the brain of DYT1 patients and is modulated over time through plasticity or compensatory mechanisms.


Asunto(s)
Cerebelo/metabolismo , Cuerpo Estriado/metabolismo , Distonía Muscular Deformante/metabolismo , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo , Adulto , Anciano , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Chaperonas Moleculares/genética , Tomografía de Emisión de Positrones , Adulto Joven
2.
Mov Disord ; 36(1): 246-251, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32956556

RESUMEN

BACKGROUND: Loss of medullary serotonin (5-hydroxytryptamine) neurons has been linked to respiratory disturbances in multiple system atrophy (MSA). Broader 5-hydroxytryptamine dysfunction may contribute to additional motor/nonmotor symptoms in MSA. The objective of this study was to compare brain 5-hydroxytryptamine1A receptor binding between MSA and healthy controls. Secondary objectives were to compare 5-hydroxytryptamine1A receptor binding between MSA and Parkinson's disease (PD) and to assess potential associations with motor/nonmotor symptoms in MSA. METHODS: 2'-Methoxyphenyl-(N-2'-pyridinyl)-p-18F-fluoro-benzamidoethylpiperazine positron emission tomography was performed in matched MSA patients (n = 16), PD patients (n = 15), and healthy controls (n = 18). RESULTS: 2'-Methoxyphenyl-(N-2'-pyridinyl)-p-18F-fluoro-benzamidoethylpiperazine distribution volume ratios were lower in MSA patients versus healthy controls in several brain regions including the caudate, raphe nuclei, thalamus, and brain stem. Distribution volume ratios were also lower in brain stem and amygdala in MSA versus PD. Moderate associations were found between 2'-methoxyphenyl-(N-2'-pyridinyl)-p-18F-fluoro-benzamidoethylpiperazine distribution volume ratios and fatigue, pain, and apathy in MSA. CONCLUSION: Our results demonstrate 5-hydroxytryptamine dysfunction in several brain regions in MSA, which may contribute to fatigue, pain, and apathy. © 2020 International Parkinson and Movement Disorder Society.


Asunto(s)
Atrofia de Múltiples Sistemas , Receptor de Serotonina 5-HT1A , Encéfalo/diagnóstico por imagen , Humanos , Atrofia de Múltiples Sistemas/diagnóstico por imagen , Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X
4.
Eur J Nucl Med Mol Imaging ; 43(7): 1258-66, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26819103

RESUMEN

CONTEXT: Somatostatin receptor scintigraphy with (111)In-pentetreotide (SRS) is used to detect duodenopancreatic neuroendocrine tumors (dpNETs) in multiple endocrine neoplasia type 1 (MEN1). However, SRS has limited sensitivity for this purpose. Positron emission tomography/computed tomography (PET/CT) with (68)Ga-DOTA-TOC has a higher rate of sporadic dpNETs detection than SRS but there is little data for dpNETs detection in MEN1. PURPOSE: To compare the performances of (68)Ga-DOTA-TOC PET/CT, SRS and contrast-enhanced computed tomography (CE-CT) to diagnose dpNETs in MEN1. DESIGN AND SETTING: Single-institution prospective comparative study PATIENTS AND METHODS: Nineteen consecutive MEN1 patients (aged 47 ± 13 years) underwent (68)Ga-DOTA-TOC PET/CT, SRS, and CE-CT within 2 months in random order. Blinded readings of images were performed separately by experienced physicians. Unblinded analysis of CE-CT, combined with additional magnetic resonance imaging, endoscopic-ultrasound, (18)F-2-fluoro-deoxy-D-glucose ((18)F-FDG) PET/CT or histopathology results served as reference standard for dpNETs diagnosis. RESULTS: The sensitivity of (68)Ga-DOTA-TOC PET/CT, SRS, and CE-CT was 76, 20, and 60 %, respectively (p < 0.0001). All the true-positive lesions detected by SRS were also depicted on (68)Ga-DOTA-TOC PET/CT. (68)Ga-DOTA-TOC PET/CT detected lesions of smaller size than SRS (10.7 ± 7.6 and 15.2 ± 5.9 mm, respectively, p < 0.03). False negatives of (68)Ga-DOTA-TOC PET/CT included small dpNETs (<10 mm) and (18)F-FDG PET/CT positive aggressive dpNETs. No false positives were recorded. In addition, whole-body mapping with (68)Ga-DOTA-TOC PET/CT identified extra-abdominal MEN1-related tumors including one neuroendocrine thymic carcinoma identified by the three imaging procedures, one bronchial carcinoid undetected by CE-CT and three meningiomas undetected by SRS. CONCLUSIONS: Owing to higher diagnostic performance, (68)Ga-DOTA-TOC PET/CT (or alternative (68)Ga-labeled somatostatin analogues) should replace (111)In-pentetreotide in the investigation of MEN1 patients.


Asunto(s)
Neoplasia Endocrina Múltiple Tipo 1/complicaciones , Tumores Neuroendocrinos/complicaciones , Tumores Neuroendocrinos/diagnóstico por imagen , Octreótido/análogos & derivados , Compuestos Organometálicos , Neoplasias Pancreáticas/complicaciones , Neoplasias Pancreáticas/diagnóstico por imagen , Tomografía Computarizada por Tomografía de Emisión de Positrones , Adulto , Anciano , Duodeno , Femenino , Humanos , Masculino , Persona de Mediana Edad
5.
Ann Pharmacother ; 49(1): 39-47, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25366341

RESUMEN

BACKGROUND: Radiopharmaceuticals are regarded as safe by the nuclear medicine community, but up to now, no survey has been conducted with from the perspective of pharmacovigilance. OBJECTIVE: To describe the adverse reactions to radiopharmaceuticals (ARRPs) reported to the French Pharmacovigilance Database (FPVD). METHODS: We selected and described all reports encompassing at least one radiopharmaceutical in the FPVD. The annual incidence of reported ARRPs used in diagnosis was also estimated. RESULTS: From 1989 to 2013, 304 reports of ARRPs were identified (43.0% serious, 12 deaths) in 54.6% women and 45.4% men; the median age was 58 years. Five therapeutic radiopharmaceuticals ((131)I-sodium iodide, (131)I-lipiodol, (89)Sr-chloride, (153)Sm-lexidronam, and (90)Y-ibritumomab-tiuxetan) were involved in 48 reports (97 adverse reactions: 86.6% serious, 9 deaths). Pulmonary disorders represented 44.3% of ARRPs used for therapy, mainly related to (131)I-lipiodol. There were 34 diagnostic radiopharmaceuticals involved in 256 reports (451 adverse reactions: 38.1% serious, 3 deaths); 8 diagnostic products ((99m)Tc-oxidronate, (18)F-fluorodeoxyglucose, (99m)Tc-tin pyrophosphate, (99m)Tc-tetrofosmin, (99m)Tc-dimercaptosuccinic acid, (201)Tl-chloride, (99m)Tc-sestamibi, and (111)In-pentetate) accounted for two-thirds of ARRPs. The most frequent adverse reactions were skin (34.4%), general (18.2%), nervous (9.0%), and gastrointestinal disorders (7.0%). There were 25 cases of altered images and 10 medication errors. The annual incidence of reported adverse reactions ranged from 1.2 × 10(-5) to 3.4 × 10(-5) diagnostic administrations. CONCLUSIONS: Reported ARRPs occurred rarely and were more serious in the therapeutic than in the diagnostic field. The notification of ARRPs was able to provide new guidance for safe use, as was the case for (131)I-lipiodol. Therefore, it is important to report ARRPs to a pharmacovigilance system.


Asunto(s)
Sistemas de Registro de Reacción Adversa a Medicamentos , Radiofármacos/efectos adversos , Sistemas de Registro de Reacción Adversa a Medicamentos/estadística & datos numéricos , Bases de Datos Factuales , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/epidemiología , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/etiología , Femenino , Francia , Humanos , Incidencia , Masculino , Errores de Medicación/estadística & datos numéricos , Farmacovigilancia
6.
Mol Imaging ; 12(5): 288-99, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23759370

RESUMEN

Brain anatomy variability is a major problem in quantifying functional images in nuclear medicine, in particular relative to aging and neurodegenerative diseases. The aim of this study was to compare affine and elastic model-based methods for magnetic resonance imaging (MRI) to brain atlas registration and to assess their impact on the quantification of cholinergic neurotransmission. Patients with multiple system atrophy (MSA) and age-matched healthy subjects underwent an MRI and a single-photon emission computed tomographic (SPECT) examination using [123I]-iodobenzovesamicol (IBVM). Both affine and elastic methods were compared to register the subjects' MRI with the Montreal Neurological Institute brain atlas. Performance of the registration accuracy was quantitatively assessed and the impact on the IBVM quantification was studied. For both subject groups, elastic registration achieved better quantitative performance compared to the affine model. For patients suffering from neurogenerative disease, this study demonstrates the importance and relevance of MRI to atlas registration in quantification of neuronal integrity. In this context, in comparison with rigid registrations, an elastic model-based registration provides the best relocation of the brain structures to the atlas for accurately quantifying cholinergic neurotransmission.


Asunto(s)
Anatomía Artística , Atlas como Asunto , Encéfalo/patología , Procesamiento de Imagen Asistido por Computador , Piperidinas , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Rayos X , Anciano , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Masculino , Imagen Multimodal , Atrofia de Múltiples Sistemas/diagnóstico por imagen , Atrofia de Múltiples Sistemas/patología
7.
Radiology ; 265(2): 537-43, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23012462

RESUMEN

PURPOSE: To evaluate the integrity of brain cholinergic pathways in vivo in patients with progressive supranuclear palsy (PSP) by measuring the vesicular acetylcholine transporter expression at single photon emission computed tomography (SPECT) with [123I]-iodobenzovesamicol. MATERIALS AND METHODS: All participants provided informed written consent according to institutional human ethics committee guidelines. Ten patients with PSP and 12 healthy volunteers underwent dynamic [123I]-iodobenzovesamicol SPECT and magnetic resonance (MR) imaging. CT and MR images were used to register the dynamic SPECT image to the Montreal Neurologic Institute brain template, which includes the regions of interest of the striatum and the septo-hippocampal, innominato-cortical, and ponto-thalamic cholinergic pathways. For each region of interest, pharmacokinetic modeling of regional time activity curves was used to calculate [123I]-iodobenzovesamicol to vesicular acetylcholine transporter binding potential value, proportional to vesicular acetylcholine transporter expression. RESULTS: When compared with control participants, patients with PSP had binding potential values that were unchanged in the striatum and septohippocampal pathway, significantly lower in the anterior cingulate cortex (P=.017) in the innominatocortical pathway, and significantly decreased in the thalamus (P=.014) in the pontothalamic cholinergic pathway. In addition, binding potential values in the thalamus were positively correlated with those in the pedunculopontine nucleus (ρ=0.81, P<.004) and binding potential values in both the thalamus (ρ=-0.88, P<.001) and pedunculopontine nucleus (ρ=-0.80, P<.010) were inversely correlated with disease duration. CONCLUSION: Cholinergic pathways were differentially affected in the PSP group, with a significant alteration of pontothalamic pathways that increased with disease progression at both cell body and terminal levels, while the innominatocortical pathway was only mildly affected, and the septohippocampal pathway and the striatum were both preserved.


Asunto(s)
Encéfalo/metabolismo , Piperidinas/farmacocinética , Terminales Presinápticos/metabolismo , Parálisis Supranuclear Progresiva/metabolismo , Tetrahidronaftalenos/farmacocinética , Tomografía Computarizada de Emisión de Fotón Único/métodos , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo , Anciano , Encéfalo/diagnóstico por imagen , Femenino , Humanos , Masculino , Terminales Presinápticos/diagnóstico por imagen , Radiofármacos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Distribución Tisular
8.
Prog Neurobiol ; 182: 101678, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31404592

RESUMEN

A line of evidence suggests that the pathophysiology of dystonia involves the striatum, whose activity is modulated among other neurotransmitters, by the dopaminergic system. However, the link between dystonia and dopamine appears complex and remains unclear. Here, we propose a physiological approach to investigate the clinical and experimental data supporting a role of the dopaminergic system in the pathophysiology of dystonic syndromes. Because dystonia is a disorder of motor routines, we first focus on the role of dopamine and striatum in procedural learning. Second, we consider the phenomenology of dystonia from every angle in order to search for features giving food for thought regarding the pathophysiology of the disorder. Then, for each dystonic phenotype, we review, when available, the experimental and imaging data supporting a connection with the dopaminergic system. Finally, we propose a putative model in which the different phenotypes could be explained by changes in the balance between the direct and indirect striato-pallidal pathways, a process critically controlled by the level of dopamine within the striatum. Search strategy and selection criteria References for this article were identified through searches in PubMed with the search terms « dystonia ¼, « dopamine", « striatum ¼, « basal ganglia ¼, « imaging data ¼, « animal model ¼, « procedural learning ¼, « pathophysiology ¼, and « plasticity ¼ from 1998 until 2018. Articles were also identified through searches of the authors' own files. Only selected papers published in English were reviewed. The final reference list was generated on the basis of originality and relevance to the broad scope of this review.


Asunto(s)
Cuerpo Estriado/fisiopatología , Dopamina/metabolismo , Trastornos Distónicos/fisiopatología , Vías Nerviosas/fisiopatología , Animales , Ganglios Basales/metabolismo , Cuerpo Estriado/metabolismo , Distonía/genética , Distonía/metabolismo , Trastornos Distónicos/metabolismo , Humanos
9.
J Nucl Med ; 58(1): 123-128, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27469360

RESUMEN

Cholinergic alterations in dementia with Lewy bodies (DLB) have been widely documented in postmortem studies, whereas in vivo studies are sparse, particularly at the subcortical level. We used 123I-iodobenzovesamicol, a SPECT radiotracer of the vesicular acetylcholine transporter, to evaluate in vivo in DLB the integrity of the 3 main cholinergic pathways-the Ch1 (septohippocampal), the Ch4 (innominatocortical), and the Ch5 (pontothalamic) cholinergic pathways-as well as the striatal cholinergic interneurons. In addition, we assessed the involvement of the cholinergic system in cognitive and neuropsychiatric disorders in DLB patients. METHODS: Twelve healthy volunteers (median age, 72 y; interquartile range, 6.25 y) and 11 DLB patients (median age, 76 y; interquartile range, 10.50 y) underwent a dynamic 123I-iodobenzovesamicol SPECT scan and an MRI scan. MR images were automatically segmented, providing the volumes of several regions of interest, including the striatum and cholinergic terminals in Ch1 (hippocampus), Ch4 (cortical lobes), and Ch5 (thalamus). For each region of interest and each subject, pharmacokinetic modeling allowed calculation of the nondisplaceable binding potential (BPND) values for the binding of 123I-iodobenzovesamicol to the vesicular acetylcholine transporter. A neuropsychological evaluation of participants was performed with the Mini-Mental State Examination and the Grober-Buschke, Set, visual discrimination, Benton, and Wechsler tests, and cognitive fluctuations and apathy were also assessed. RESULTS: Compared with BPND values for healthy subjects, BPND values for DLB patients were significantly lower in the Ch4 terminal regions of the anterior cingulate cortex and the superior and inferior parietal cortices (P = 0.0006, 0.0015, and 0.0023, respectively), in the Ch5 terminal region of the thalamus (P = 0.0003), and in the striatum (P = 0.0042). All of the neuropsychological test scores were significantly lower in DLB patients than in healthy subjects. Four DLB patients with apathy and 4 DLB patients without apathy were identified. For the anterior cingulate cortex, compared with BPND values in healthy subjects, BPND values were significantly lower in patients with apathy (P = 0.004) and were unchanged in patients without apathy. CONCLUSION: Our results confirm the existence in DLB of cholinergic alterations, reaching both cortical and subcortical levels, including the Ch5 pathway and the striatum. Alterations in cholinergic transmission in the anterior cingulate cortex could be closely associated with the development of apathy.


Asunto(s)
Encéfalo/diagnóstico por imagen , Neuronas Colinérgicas/patología , Enfermedad por Cuerpos de Lewy/diagnóstico por imagen , Tomografía Computarizada de Emisión de Fotón Único/métodos , Anciano , Anciano de 80 o más Años , Encéfalo/metabolismo , Neuronas Colinérgicas/metabolismo , Femenino , Humanos , Enfermedad por Cuerpos de Lewy/metabolismo , Masculino , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/metabolismo , Piperidinas/farmacocinética , Radiofármacos/farmacocinética , Tetrahidronaftalenos/farmacocinética , Distribución Tisular , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo
11.
Nucl Med Commun ; 36(2): 201-6, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25321161

RESUMEN

Quantitative imaging with PET requires accurate measurements of the amount of radioactivity injected into the patient and the concentration of radioactivity in a given region. Recently, new positron emitters, such as (124)I, (89)Zr, (82)Rb, (68)Ga, and (64)Cu, have emerged to promote PET development, but standards are still largely lacking. Therefore, we propose to validate a simple, robust, and replicable methodology, not requiring the use of any standards, to accurately calibrate a dose-calibrator for any ß(+)-emitter. On the basis of (18)F cross-calibration, routinely performed with fluorine-18-fluorodeoxyglucose (F-FDG) in nuclear medicine departments, a methodology was developed using ß(+)-emitting' phantoms to cross-calibrate the dose-calibrator for measuring the activity of positron emitters and quantifying the standardized uptake value (SUV). Ga phantoms filled with activities measured with various dose-calibrator settings were imaged to establish calibration curves (SUV values as a function of the dose-calibrator settings) and to identify the setting value, yielding an SUV value of 1.00 g/ml, reflecting an accurate measurement of (68)Ga activity. Activities measured with the identified setting were finally checked with a γ-counter. The setting of 772±1 was identified as ensuring that the studied dose-calibrator is correctly calibrated for (68)Ga to ensure an SUV value of 1.00±0.01 g/ml. γ-Ray spectrometry confirmed the accurate measurement of Ga activities by the dose-calibrator (relative error of 2.9±1.5%). We have developed a phantom-based method to accurately standardize dose-calibrators for any ß(+)-emitter, without any standards.


Asunto(s)
Partículas beta , Fantasmas de Imagen , Dosis de Radiación , Radiometría/instrumentación , Radiometría/normas , Calibración , Fluorodesoxiglucosa F18 , Radioisótopos de Galio , Tomografía de Emisión de Positrones , Estándares de Referencia , Reproducibilidad de los Resultados , Incertidumbre
12.
J Nucl Med ; 56(6): 862-8, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25908834

RESUMEN

UNLABELLED: (123)I-iodobenzovesamicol is a SPECT radioligand selective for the vesicular acetylcholine transporter (VAChT) and used to assess the integrity of cholinergic pathways in various neurologic disorders. The current noninvasive method for quantitative analysis of (123)I-iodobenzovesamicol, based on multilinear reference tissue model 2 (MRTM2), requires repeated scans for several hours, limiting its application in clinical trials. Our objective was to validate a simplified acquisition method based on a single (123)I-iodobenzovesamicol static scan preserving the quantification accuracy. Three acquisition times were tested comparatively to a kinetic analysis using MRTM2. METHODS: Six healthy volunteers underwent a dynamic SPECT acquisition comprising 14 frames over 28 h and an MR imaging scan. MR images were automatically segmented, providing the volumes of 19 regions of interest (ROIs). SPECT datasets were coregistered with MR images, and regional time-activity curves were derived. For each ROI, a complete MRTM2 pharmacokinetic analysis, using the cerebellar hemispheres as the reference region, led to the calculation of a (123)I-iodobenzovesamicol-to-VAChT binding parameter, the nondisplaceable binding potential (BP(ND-MRTM2)). A simplified analysis was also performed at 5, 8, and 28 h after injection, providing a simplified BP(ND), given as BP(ND-t) = C(ROI) - C(cerebellar hemispheres)/C(cerebellar hemispheres), with C being the averaged radioactive concentration. RESULTS: No significant difference was found among BP(ND-5 h), BP(ND-8 h), and BP(ND-MRTM2) in any of the extrastriatal regions explored. BP(ND-28 h) was significantly higher than BP(ND-5 h), BP(ND-8 h), and BP(ND-MRTM2) in 9 of the 17 regions explored (P < 0.05). BP(ND-5 h), BP(ND-8 h), and BP(ND-28 h) correlated significantly with BP(ND-MRTM2) (P < 0.05; ρ = 0.99, 0.98, and 0.92, respectively). In the striatum, BP(ND-28 h) was significantly higher than BP(ND-5 h) and BP(ND-8 h). BP(ND-5 h) differed significantly from BP(ND-MRTM2) (P < 0.05), with BP(ND-5 h) being 43.6% lower. CONCLUSION: In the extrastriatal regions, a single acquisition at 5 or 8 h after injection provides quantitative results similar to a pharmacokinetic analysis. However, with the highest correlation and accuracy, 5 h is the most suitable time to perform an accurate (123)I-iodobenzovesamicol quantification. In the striatum, none of the 3 times has led to an accurate quantification.


Asunto(s)
Radioisótopos de Yodo , Piperidinas , Tomografía Computarizada de Emisión de Fotón Único/métodos , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo , Anciano , Encéfalo/diagnóstico por imagen , Voluntarios Sanos , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Imagen Multimodal , Valores de Referencia , Reproducibilidad de los Resultados , Factores de Tiempo , Tomografía Computarizada por Rayos X
13.
Neuroimage Clin ; 3: 212-7, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24179865

RESUMEN

UNLABELLED: We evaluated in vivo the integrity of brain cholinergic pathways in Multiple System Atrophy (MSA) and the relationship between cholinergic dysfunction and motor disturbances, by measuring the vesicular acetylcholine transporter (VAChT) expression using Single Photon Emission Computed Tomography (SPECT) and [(123)I]-iodobenzovesamicol ([(123)I]-IBVM). METHODS: Nine patients with probable MSA and 12 healthy volunteers underwent a dynamic [(123)I]-IBVM SPECT-CT scan and a magnetic resonance imaging (MRI) scan. All patients were examined with the Unified MSA Rating Scale (UMSARS; subscale I = activities of daily living (ADL), II = motor and IV = disability). CT and MRI images were used to register the dynamic SPECT image to the Montreal Neurological Institute brain template, which includes the regions of interest (ROI) of striatum and Ch1 (medial septum nucleus-hippocampus), Ch4 (nucleus basalis of Meynert-cortex) and Ch5-Ch6 (pedunculopontine and laterodorsal tegmental nuclei-thalamus) cholinergic pathways. For each ROI, pharmacokinetic modeling of regional time activity curves led to the calculation of [(123)I]-IBVM to VAChT binding potential (BPND) value, proportional to VAChT expression. RESULTS: When compared to controls, BPND values for MSA in Ch5-Ch6 were significantly decreased in both the pedunculopontine-laterodorsal nuclei and the thalamus (p = 0.004 and p = 0.006, respectively). Additionally, thalamus BPND values were correlated with UMSARS ADL (p = 0.006), motor (p = 0.002) and disability (p = 0.02) sub-scores. UMSARS motor subscale items 13 (postural instability) and 14 (gait) were also correlated with thalamus BPND values (p = 0.04). CONCLUSION: Ch5-Ch6 are the most affected cholinergic pathways in MSA at both cell bodies and thalamic cholinergic terminals. These results underscore the relevant role of [(123)I]-IBVM SPECT for improving our understanding of the pathophysiology in MSA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA