Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 568(7752): 391-394, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30918405

RESUMEN

Access to adequate housing is a fundamental human right, essential to human security, nutrition and health, and a core objective of the United Nations Sustainable Development Goals1,2. Globally, the housing need is most acute in Africa, where the population will more than double by 2050. However, existing data on housing quality across Africa are limited primarily to urban areas and are mostly recorded at the national level. Here we quantify changes in housing in sub-Saharan Africa from 2000 to 2015 by combining national survey data within a geostatistical framework. We show a marked transformation of housing in urban and rural sub-Saharan Africa between 2000 and 2015, with the prevalence of improved housing (with improved water and sanitation, sufficient living area and durable construction) doubling from 11% (95% confidence interval, 10-12%) to 23% (21-25%). However, 53 (50-57) million urban Africans (47% (44-50%) of the urban population analysed) were living in unimproved housing in 2015. We provide high-resolution, standardized estimates of housing conditions across sub-Saharan Africa. Our maps provide a baseline for measuring change and a mechanism to guide interventions during the era of the Sustainable Development Goals.


Asunto(s)
Mapeo Geográfico , Vivienda/estadística & datos numéricos , África del Sur del Sahara , Escolaridad , Composición Familiar , Vivienda/economía , Vivienda/provisión & distribución , Factores Socioeconómicos , Desarrollo Sostenible/economía
2.
Malar J ; 23(1): 122, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671462

RESUMEN

BACKGROUND: Anopheles coluzzii is a primary vector of malaria found in West and Central Africa, but its presence has hitherto never been documented in Kenya. A thorough understanding of vector bionomics is important as it enables the implementation of targeted and effective vector control interventions. Malaria vector surveillance efforts in the country have tended to focus on historically known primary vectors. The current study sought to determine the taxonomic status of samples collected from five different malaria epidemiological zones in Kenya as well as describe the population genetic structure and insecticide resistance profiles in relation to other An. coluzzii populations. METHODS: Mosquitoes were sampled as larvae from Busia, Kwale, Turkana, Kirinyaga and Kiambu counties, representing the range of malaria endemicities in Kenya, in 2019 and 2021 and emergent adults analysed using Whole Genome Sequencing (WGS) data processed in accordance with the Anopheles gambiae 1000 Genomes Project phase 3. Where available, historical samples from the same sites were included for WGS. Comparisons were made with An. coluzzii cohorts from West and Central Africa. RESULTS: This study reports the detection of An. coluzzii for the first time in Kenya. The species was detected in Turkana County across all three time points from which samples were analyzed and its presence confirmed through taxonomic analysis. Additionally, there was a lack of strong population genetic differentiation between An. coluzzii from Kenya and those from the more northerly regions of West and Central Africa, suggesting they represent a connected extension to the known species range. Mutations associated with target-site resistance to DDT and pyrethroids and metabolic resistance to DDT were found at high frequencies up to 64%. The profile and frequencies of the variants observed were similar to An. coluzzii from West and Central Africa but the ace-1 mutation linked to organophosphate and carbamate resistance present in An. coluzzii from coastal West Africa was absent in Kenya. CONCLUSIONS: These findings emphasize the need for the incorporation of genomics in comprehensive and routine vector surveillance to inform on the range of malaria vector species, and their insecticide resistance status to inform the choice of effective vector control approaches.


Asunto(s)
Anopheles , Resistencia a los Insecticidas , Mosquitos Vectores , Animales , Anopheles/genética , Anopheles/efectos de los fármacos , Anopheles/clasificación , Resistencia a los Insecticidas/genética , Kenia , Mosquitos Vectores/genética , Mosquitos Vectores/efectos de los fármacos , Genética de Población , África Occidental , Insecticidas/farmacología , África Central , Femenino
3.
Emerg Infect Dis ; 29(12): 2498-2508, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37966106

RESUMEN

The Anopheles stephensi mosquito is an invasive malaria vector recently reported in Djibouti, Ethiopia, Sudan, Somalia, Nigeria, and Ghana. The World Health Organization has called on countries in Africa to increase surveillance efforts to detect and report this vector and institute appropriate and effective control mechanisms. In Kenya, the Division of National Malaria Program conducted entomological surveillance in counties at risk for An. stephensi mosquito invasion. In addition, the Kenya Medical Research Institute conducted molecular surveillance of all sampled Anopheles mosquitoes from other studies to identify An. stephensi mosquitoes. We report the detection and confirmation of An. stephensi mosquitoes in Marsabit and Turkana Counties by using endpoint PCR and morphological and sequence identification. We demonstrate the urgent need for intensified entomological surveillance in all areas at risk for An. stephensi mosquito invasion, to clarify its occurrence and distribution and develop tailored approaches to prevent further spread.


Asunto(s)
Anopheles , Investigación Biomédica , Malaria , Animales , Kenia/epidemiología , Malaria/epidemiología , Malaria/prevención & control , Mosquitos Vectores
4.
Mol Ecol ; 31(16): 4307-4318, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35775282

RESUMEN

Studies of insecticide resistance provide insights into the capacity of populations to show rapid evolutionary responses to contemporary selection. Malaria control remains heavily dependent on pyrethroid insecticides, primarily in long lasting insecticidal nets (LLINs). Resistance in the major malaria vectors has increased in concert with the expansion of LLIN distributions. Identifying genetic mechanisms underlying high-level resistance is crucial for the development and deployment of resistance-breaking tools. Using the Anopheles gambiae 1000 genomes (Ag1000g) data we identified a very recent selective sweep in mosquitoes from Uganda which localized to a cluster of cytochrome P450 genes. Further interrogation revealed a haplotype involving a trio of mutations, a nonsynonymous point mutation in Cyp6p4 (I236M), an upstream insertion of a partial Zanzibar-like transposable element (TE) and a duplication of the Cyp6aa1 gene. The mutations appear to have originated recently in An. gambiae from the Kenya-Uganda border, with stepwise replacement of the double-mutant (Zanzibar-like TE and Cyp6p4-236 M) with the triple-mutant haplotype (including Cyp6aa1 duplication), which has spread into the Democratic Republic of Congo and Tanzania. The triple-mutant haplotype is strongly associated with increased expression of genes able to metabolize pyrethroids and is strongly predictive of resistance to pyrethroids most notably deltamethrin. Importantly, there was increased mortality in mosquitoes carrying the triple-mutation when exposed to nets cotreated with the synergist piperonyl butoxide (PBO). Frequencies of the triple-mutant haplotype remain spatially variable within countries, suggesting an effective marker system to guide deployment decisions for limited supplies of PBO-pyrethroid cotreated LLINs across African countries.


Asunto(s)
Anopheles , Antimaláricos , Mosquiteros Tratados con Insecticida , Insecticidas , Malaria , Piretrinas , Animales , Anopheles/genética , Antimaláricos/farmacología , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Kenia , Malaria/prevención & control , Mosquitos Vectores/genética , Patología Molecular , Piretrinas/farmacología
5.
J Infect Dis ; 223(12 Suppl 2): S155-S170, 2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33906217

RESUMEN

INTRODUCTION: In order to improve our understanding of the fundamental limits of core interventions and guide efforts based on prioritization and identification of effective/novel interventions with great potentials to interrupt persistent malaria transmission in the context of high vector control coverage, the drivers of persistent disease transmission were investigated in three eco-epidemiological settings; forested areas in Cameroon, coastal area in Kenya and highland areas in Ethiopia. METHODS: Mosquitoes were sampled in three eco-epidemiological settings using different entomological sampling techniques and analysed for Plasmodium infection status and blood meal origin in blood-fed specimens. Human behavioural surveys were conducted to assess the knowledge and attitude of the population on malaria and preventive measures, their night activities, and sleeping pattern. The parasitological analysis was conducted to determine the prevalence of Plasmodium infection in the population using rapid diagnostic tests. RESULTS: Despite the diversity in the mosquito fauna, their biting behaviour was found to be closely associated to human behaviour in the three settings. People in Kenya and Ethiopia were found to be more exposed to mosquito bites during the early hours of the evening (18-21h) while it was in the early morning (4-6 am) in Cameroon. Malaria transmission was high in Cameroon compared to Kenya and Ethiopia with over 50% of the infected bites recorded outdoors. The non-users of LLINs were 2.5 to 3 times more likely to be exposed to the risk of acquiring malaria compared to LLINs users. Malaria prevalence was high (42%) in Cameroon, and more than half of the households visited had at least one individual infected with Plasmodium parasites. CONCLUSIONS: The study suggests high outdoor malaria transmission occurring in the three sites with however different determinants driving residual malaria transmission in these areas.


Asunto(s)
Anopheles/parasitología , Malaria/transmisión , Control de Mosquitos/métodos , Mosquitos Vectores/parasitología , Plasmodium , Animales , Camerún/epidemiología , Etiopía/epidemiología , Humanos , Kenia/epidemiología , Malaria/epidemiología
6.
Malar J ; 20(1): 461, 2021 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-34903240

RESUMEN

BACKGROUND: Molecular diagnostic tools have been incorporated in insecticide resistance monitoring programmes to identify underlying genetic basis of resistance and develop early warning systems of vector control failure. Identifying genetic markers of insecticide resistance is crucial in enhancing the ability to mitigate potential effects of resistance. The knockdown resistance (kdr) mutation associated with resistance to DDT and pyrethroids, the acetylcholinesterase-1 (ace-1R) mutation associated with resistance to organophosphates and carbamates and 2La chromosomal inversion associated with indoor resting behaviour, were investigated in the present study. METHODS: Anopheles mosquitoes sampled from different sites in Kenya and collected within the context of malaria vector surveillance were analysed. Mosquitoes were collected indoors using light traps, pyrethrum spray and hand catches between August 2016 and November 2017. Mosquitoes were identified using morphological keys and Anopheles gambiae sensu lato (s.l.) mosquitoes further identified into sibling species by the polymerase chain reaction method following DNA extraction by alcohol precipitation. Anopheles gambiae and Anopheles arabiensis were analysed for the presence of the kdr and ace-1R mutations, while 2La inversion was only screened for in An. gambiae where it is polymorphic. Chi-square statistics were used to determine correlation between the 2La inversion karyotype and kdr-east mutation. RESULTS: The kdr-east mutation occurred at frequencies ranging from 0.5 to 65.6% between sites. The kdr-west mutation was only found in Migori at a total frequency of 5.3% (n = 124). No kdr mutants were detected in Tana River. The ace-1R mutation was absent in all populations. The 2La chromosomal inversion screened in An. gambiae occurred at frequencies of 87% (n = 30), 80% (n = 10) and 52% (n = 50) in Baringo, Tana River and Migori, respectively. A significant association between the 2La chromosomal inversion and the kdr-east mutation was found. CONCLUSION: The significant association between the 2La inversion karyotype and kdr-east mutation suggests that pyrethroid resistant An. gambiae continue to rest indoors regardless of the presence of treated bed nets and residual sprays, a persistence further substantiated by studies documenting continued mosquito abundance indoors. Behavioural resistance by which Anopheles vectors prefer not to rest indoors may, therefore, not be a factor of concern in this study's malaria vector populations.


Asunto(s)
Anopheles/genética , Marcadores Genéticos , Resistencia a los Insecticidas/genética , Mosquitos Vectores/genética , Animales , Inversión Cromosómica , Kenia , Mosquitos Vectores/fisiología , Descanso
7.
Malar J ; 19(1): 341, 2020 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-32950061

RESUMEN

BACKGROUND: Mosquito-proofing of houses using wire mesh screens is gaining greater recognition as a practical intervention for reducing exposure to malaria transmitting mosquitoes. Screening potentially protects all persons sleeping inside the house against transmission of mosquito-borne diseases indoors. The study assessed the effectiveness of house eaves screening in reducing indoor vector densities and malaria prevalence in Nyabondo, western Kenya. METHODS: 160 houses were selected for the study, with half of them randomly chosen for eaves screening with fibre-glass coated wire mesh (experimental group) and the other half left without screening (control group). Randomization was carried out by use of computer-generated list in permuted blocks of ten houses and 16 village blocks, with half of them allocated treatment in a ratio of 1:1. Cross-sectional baseline entomological and parasitological data were collected before eave screening. After baseline data collection, series of sampling of indoor adult mosquitoes were conducted once a month in each village using CDC light traps. Three cross-sectional malaria parasitological surveys were conducted at three month intervals after installation of the screens. The primary outcome measures were indoor Anopheles mosquito density and malaria parasite prevalence. RESULTS: A total of 15,286 mosquitoes were collected over the two year period using CDC light traps in 160 houses distributed over 16 study villages (mean mosquitoes = 4.35, SD = 11.48). Of all mosquitoes collected, 2,872 (18.8%) were anophelines (2,869 Anopheles gambiae sensu lato, 1 Anopheles funestus and 2 other Anopheles spp). Overall, among An. gambiae collected, 92.6% were non-blood fed, 3.57% were blood fed and the remaining 0.47% were composed of gravid and half gravid females. More indoor adult mosquitoes were collected in the control than experimental arms of the study. Results from cross-sectional parasitological surveys showed that screened houses recorded relatively low malaria parasite prevalence rates compared to the control houses. Overall, malaria prevalence was 5.6% (95% CI: 4.2-7.5) n = 1,918, with baseline prevalence rate of 6.1% (95% CI: 3.9-9.4), n = 481 and 3rd follow-up survey prevalence of 3.6% (95% CI: 2.0-6.8) n = 494. At all the three parasitological follow-up survey points, house screening significantly reduced the malaria prevalence by 100% (p < 0.001), 63.6% (p = 0.026), and 100% (p < 0.001) in the 1st, 2nd and 3rd follow-up surveys respectively. CONCLUSIONS: The study demonstrated that house eave screening has potential to reduce indoor vector densities and malaria prevalence in high transmission areas.


Asunto(s)
Anopheles , Vivienda , Insecticidas , Malaria Falciparum/prevención & control , Control de Mosquitos , Mosquitos Vectores , Animales , Estudios Transversales , Humanos , Kenia/epidemiología , Malaria Falciparum/epidemiología , Densidad de Población , Prevalencia
8.
Malar J ; 19(1): 390, 2020 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-33143707

RESUMEN

BACKGROUND: Malaria prevention in Africa is mainly through the use of long-lasting insecticide treated nets (LLINs). The objective of the study was to assess the effect of supplementing LLINs with either larviciding with Bacillus thuringiensis israelensis (Bti) or community education and mobilization (CEM), or with both interventions in the context of integrated vector management (IVM). METHODS: The study involved a factorial, cluster-randomized, controlled trial conducted in Malindi and Nyabondo sites in Kenya and Tolay site in Ethiopia, to assess the impact of the following four intervention options on mosquitoes and malaria prevalence: LLINs only (arm 1); LLINs and Bti (arm 2); LLINs and CEM (arm 3); and, LLINs combined with Bti and CEM (arm 4). Between January 2013 and December 2015, CDC light traps were used to sample adult mosquitoes during the second, third and fourth quarter of each year in 10 houses in each of 16 villages at each of the three study sites. Larvae were sampled once a fortnight from potential mosquito-breeding habitats using standard plastic dippers. Cross-sectional malaria parasite prevalence surveys were conducted involving a total of 11,846 primary school children during the 3-year period, including 4800 children in Tolay, 3000 in Malindi and 4046 in Nyabondo study sites. RESULTS: Baseline relative indoor anopheline density was 0.11, 0.05 and 0.02 mosquitoes per house per night in Malindi, Tolay and Nyabondo sites, respectively. Nyabondo had the highest recorded overall average malaria prevalence among school children at 32.4%, followed by Malindi with 5.7% and Tolay 1.7%. There was no significant reduction in adult anopheline density at each of the three sites, which could be attributed to adding of the supplementary interventions to the usage of LLINs. Malaria prevalence was significantly reduced by 50% in Tolay when using LLINs coupled with application of Bti, community education and mobilization. The two other sites did not reveal significant reduction of prevalence as a result of combining LLINs with any of the other supplementary interventions. CONCLUSION: Combining LLINs with larviciding with Bti and CEM further reduced malaria infection in a low prevalence setting in Ethiopia, but not at sites with relatively higher prevalence in Kenya. More research is necessary at the selected sites in Kenya to periodically determine the suite of vector control interventions and broader disease management strategies, which when integrated would further reduce adult anopheline populations and malaria prevalence beyond what is achieved with LLINs.


Asunto(s)
Anopheles , Bacillus thuringiensis/química , Educación en Salud/estadística & datos numéricos , Larva , Malaria/prevención & control , Control de Mosquitos/estadística & datos numéricos , Mosquitos Vectores , Animales , Anopheles/crecimiento & desarrollo , Estudios Transversales , Etiopía , Educación en Salud/organización & administración , Kenia , Larva/crecimiento & desarrollo
9.
BMC Public Health ; 19(1): 1318, 2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31638928

RESUMEN

BACKGROUND: Integrated vector management (IVM) remains a key strategy in the fight against vector-borne diseases including malaria. However, impacts of the strategy should be regularly monitored based on feedback obtained through research. The objective of this study was to assess the impact of IVM for malaria control in Botor-Tolay district, southwestern Ethiopia after three years (2016-2018) of IVM implementation. METHOD: Prior to the implementation of IVM, a survey of socio-demographic, malaria burden, and communities' perception towards malaria control was conducted in 200 households selected at random from 12 villages using standard questionnaire. Households were revisited after three years of project implementation for impact assessment. Compiled malaria case data was obtained from district health bureau for the three years period of the study while adult mosquito collection was conducted during each year using CDC light traps. Monthly larval mosquito collections were made each year using standard dipping method. Community education and mobilization (CEM) was made through different community-based structures. RESULTS: The proportion of respondents who sought treatment in health facilities showed a significant increase from 76% in 2015 to 90% in 2018(P < 0.001). An average of 6.3 working and 2.3 school days were lost per year in a household due to parents and children falling sick with malaria. Malaria costs in a household in Botor-Tolay averaged 13.3 and 4.5 USD per episode for medical treatment and transportation respectively. Significantly fewer adult mosquitoes were collected in 2018 (0.37/house/trap-night) as compared to 2015 (0.73/house/trap-night) (P < .001). Malaria cases significantly declined in 2018 (262) when compared to the record in 2015 (1162) (P < 0.001). Despite improved human behavioral changes towards mosquito and malaria control, there were many setbacks too. These include reluctance to seek treatment in a timely manner, low user compliance of LLINs and low net repairing habit. CONCLUSION: The coordinated implementation of community-based education, environmental management, larviciding together with main core vector control interventions in Botor-Tolay district in Southwestern Ethiopia have contributed to significant decline in malaria cases reported from health facilities. However, commitment to seeking treatment by people with clinical symptoms of malaria and to repair of damaged mosquito nets remained low.


Asunto(s)
Participación de la Comunidad , Malaria/prevención & control , Control de Mosquitos/métodos , Mosquitos Vectores , Adulto , Etiopía/epidemiología , Composición Familiar , Femenino , Educación en Salud , Conocimientos, Actitudes y Práctica en Salud , Humanos , Mosquiteros Tratados con Insecticida/estadística & datos numéricos , Malaria/epidemiología , Masculino , Aceptación de la Atención de Salud/estadística & datos numéricos , Evaluación de Programas y Proyectos de Salud , Encuestas y Cuestionarios
10.
Emerg Infect Dis ; 23(5): 758-764, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28418293

RESUMEN

Insecticide resistance might reduce the efficacy of malaria vector control. In 2013 and 2014, malaria vectors from 50 villages, of varying pyrethroid resistance, in western Kenya were assayed for resistance to deltamethrin. Long-lasting insecticide-treated nets (LLIN) were distributed to households at universal coverage. Children were recruited into 2 cohorts, cleared of malaria-causing parasites, and tested every 2 weeks for reinfection. Infection incidence rates for the 2 cohorts were 2.2 (95% CI 1.9-2.5) infections/person-year and 2.8 (95% CI 2.5-3.0) infections/person-year. LLIN users had lower infection rates than non-LLIN users in both low-resistance (rate ratio 0.61, 95% CI 0.42-0.88) and high-resistance (rate ratio 0.55, 95% CI 0.35-0.87) villages (p = 0.63). The association between insecticide resistance and infection incidence was not significant (p = 0.99). Although the incidence of infection was high among net users, LLINs provided significant protection (p = 0.01) against infection with malaria parasite regardless of vector insecticide resistance.


Asunto(s)
Resistencia a los Insecticidas , Mosquiteros Tratados con Insecticida , Insecticidas , Malaria/epidemiología , Malaria/prevención & control , Control de Mosquitos , Mosquitos Vectores , Animales , Niño , Preescolar , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Humanos , Incidencia , Lactante , Insecticidas/farmacología , Kenia/epidemiología , Malaria/parasitología , Malaria/transmisión , Masculino , Control de Mosquitos/métodos , Mosquitos Vectores/parasitología , Vigilancia en Salud Pública
11.
Malar J ; 15: 182, 2016 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-27013475

RESUMEN

BACKGROUND: Population genomic features such as nucleotide diversity and linkage disequilibrium are expected to be strongly shaped by changes in population size, and might therefore be useful for monitoring the success of a control campaign. In the Kilifi district of Kenya, there has been a marked decline in the abundance of the malaria vector Anopheles gambiae subsequent to the rollout of insecticide-treated bed nets. METHODS: To investigate whether this decline left a detectable population genomic signature, simulations were performed to compare the effect of population crashes on nucleotide diversity, Tajima's D, and linkage disequilibrium (as measured by the population recombination parameter ρ). Linkage disequilibrium and ρ were estimated for An. gambiae from Kilifi, and compared them to values for Anopheles arabiensis and Anopheles merus at the same location, and for An. gambiae in a location 200 km from Kilifi. RESULTS: In the first simulations ρ changed more rapidly after a population crash than the other statistics, and therefore is a more sensitive indicator of recent population decline. In the empirical data, linkage disequilibrium extends 100-1000 times further, and ρ is 100-1000 times smaller, for the Kilifi population of An. gambiae than for any of the other populations. There were also significant runs of homozygosity in many of the individual An. gambiae mosquitoes from Kilifi. CONCLUSIONS: These results support the hypothesis that the recent decline in An. gambiae was driven by the rollout of bed nets. Measuring population genomic parameters in a small sample of individuals before, during and after vector or pest control may be a valuable method of tracking the effectiveness of interventions.


Asunto(s)
Anopheles/crecimiento & desarrollo , Anopheles/genética , Variación Genética , Genética de Población , Insectos Vectores , Animales , Anopheles/clasificación , Simulación por Computador , Genómica , Kenia , Mosquiteros/estadística & datos numéricos
12.
Malar J ; 15: 14, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26738483

RESUMEN

BACKGROUND: Malaria remains a major health and development challenge in the sub-Saharan African economies including Kenya, yet it can be prevented. Technologies to prevent malaria are available but are not universally adopted by male- and female-headed households. The study thus, examined the role of gender in malaria prevention, examining adoption behaviour between male- and female-headed households in Kenya. METHODS: The study uses a recent baseline cross-section survey data collected from 2718 households in parts of western and eastern Kenya. Two separate models were estimated for male- and female-headed households to determine if the drivers of adoption differ between the two categories of households. RESULTS: The findings from the study show that: access to public health information, residing in villages with higher experience in malaria prevention, knowledge on the cause and transmission of malaria significantly increase the number of practices adopted in both male- and female-headed households. On the other hand, formal education of the household head and livestock units owned exhibited a positive and significant effect on adoption among male-headed households, but no effect among female-headed households. CONCLUSIONS: The findings from thus study suggest that universal policy tools can be used to promote uptake of integrated malaria prevention practices, for female- and male-headed households.


Asunto(s)
Malaria/prevención & control , Estudios Transversales , Composición Familiar , Femenino , Conductas Relacionadas con la Salud , Humanos , Kenia , Masculino , Población Rural , Factores Sexuales
13.
Mol Biol Evol ; 31(4): 889-902, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24408911

RESUMEN

Anopheles gambiae s.l. are important malaria vectors, but little is known about their genomic variation in the wild. Here, we present inter- and intraspecies analysis of genome-wide RADseq data, in three Anopheles gambiae s.l. species collected from East Africa. The mosquitoes fall into three genotypic clusters representing described species (A. gambiae, A. arabiensis, and A. merus) with no evidence of cryptic breeding units. Anopheles merus is the most divergent of the three species, supporting a recent new phylogeny based on chromosomal inversions. Even though the species clusters are well separated, there is extensive shared polymorphism, particularly between A. gambiae and A. arabiensis. Divergence between A. gambiae and A. arabiensis does not vary across the autosomes but is higher in X-linked inversions than elsewhere on X or on the autosomes, consistent with the suggestion that this inversion (or a gene within it) is important in reproductive isolation between the species. The 2La/2L+(a) inversion shows no more evidence of introgression between A. gambiae and A. arabiensis than the rest of the autosomes. Population differentiation within A. gambiae and A. arabiensis is weak over approximately 190-270 km, implying no strong barriers to dispersal. Analysis of Tajima's D and the allele frequency spectrum is consistent with modest population increases in A. arabiensis and A. merus, but a more complex demographic history of expansion followed by contraction in A. gambiae. Although they are less than 200 km apart, the two A. gambiae populations show evidence of different demographic histories.


Asunto(s)
Anopheles/genética , Insectos Vectores/genética , Polimorfismo de Nucleótido Simple , Animales , Femenino , Especiación Genética , Genoma de los Insectos , Humanos , Kenia , Desequilibrio de Ligamiento , Malaria/transmisión , Masculino , Control de Mosquitos , Filogeografía , Análisis de Secuencia de ADN , Especificidad de la Especie , Tanzanía
14.
Malar J ; 14: 282, 2015 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-26194648

RESUMEN

BACKGROUND: Progress in reducing the malaria disease burden through the substantial scale up of insecticide-based vector control in recent years could be reversed by the widespread emergence of insecticide resistance. The impact of insecticide resistance on the protective effectiveness of insecticide-treated nets (ITN) and indoor residual spraying (IRS) is not known. A multi-country study was undertaken in Sudan, Kenya, India, Cameroon and Benin to quantify the potential loss of epidemiological effectiveness of ITNs and IRS due to decreased susceptibility of malaria vectors to insecticides. The design of the study is described in this paper. METHODS: Malaria disease incidence rates by active case detection in cohorts of children, and indicators of insecticide resistance in local vectors were monitored in each of approximately 300 separate locations (clusters) with high coverage of malaria vector control over multiple malaria seasons. Phenotypic and genotypic resistance was assessed annually. In two countries, Sudan and India, clusters were randomly assigned to receive universal coverage of ITNs only, or universal coverage of ITNs combined with high coverage of IRS. Association between malaria incidence and insecticide resistance, and protective effectiveness of vector control methods and insecticide resistance were estimated, respectively. RESULTS: Cohorts have been set up in all five countries, and phenotypic resistance data have been collected in all clusters. In Sudan, Kenya, Cameroon and Benin data collection is due to be completed in 2015. In India data collection will be completed in 2016. DISCUSSION: The paper discusses challenges faced in the design and execution of the study, the analysis plan, the strengths and weaknesses, and the possible alternatives to the chosen study design.


Asunto(s)
Culicidae/efectos de los fármacos , Insectos Vectores/efectos de los fármacos , Resistencia a los Insecticidas , Malaria/epidemiología , Malaria/prevención & control , África del Sur del Sahara/epidemiología , Animales , Preescolar , Femenino , Humanos , India/epidemiología , Lactante , Recién Nacido , Insecticidas/farmacología , Malaria/transmisión , Control de Mosquitos/métodos , Prevalencia
15.
Res Sq ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38410447

RESUMEN

Background: Anopheles coluzzii is a primary vector of malaria found in West and Central Africa, but its presence has hitherto never been documented in Kenya. A thorough understanding of vector bionomics is important as it enables the implementation of targeted and effective vector control interventions. Malaria vector surveillance efforts in the country have tended to focus on historically known primary vectors. In the current study, we sought to determine the taxonomic status of samples collected from five different malaria epidemiological zones in Kenya as well asdescribe the population genetic structure and insecticide resistance profiles in relation to other An. coluzzi populations. Methods: Mosquitoes were sampled as larvae from Busia, Kwale, Turkana, Kirinyaga and Kiambu counties, representing the range of malaria endemicities in Kenya, in 2019 and 2021 and emergent adults analysed using Whole Genome Sequencing data processed in accordance with the Anopheles gambiae 1000 Genomes Project phase 3. Where available, historical samples from the same sites were included for WGS. Results: This study reports the detection of Anopheles coluzzii for the first time in Kenya. The species was detected in Turkana County across all three time points sampled and its presence confirmed through taxonomic analysis. Additionally, we found a lack of strong population genetic differentiation between An. coluzzii from Kenya and those from the more northerly regions of West and Central Africa, suggesting they represent a connected extension to the known species range. Mutations associated with target-site resistance to DDT and pyrethroids and metabolic resistance to DDT were found at high frequencies of ~60%. The profile and frequencies of the variants observed were similar to An. coluzzii from West and Central Africa but the ace-1 mutation linked to organophosphate and carbamate resistance present in An. coluzzii from coastal West Africa was absent in Kenya. Conclusions: These findings emphasise the need for the incorporation of genomics in comprehensive and routine vector surveillance to inform on the range of malaria vector species, and their insecticide resistance status to inform the choice of effective vector control approaches.

16.
Malar J ; 12: 13, 2013 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-23297732

RESUMEN

BACKGROUND: Over the past 20 years, numerous studies have investigated the ecology and behaviour of malaria vectors and Plasmodium falciparum malaria transmission on the coast of Kenya. Substantial progress has been made to control vector populations and reduce high malaria prevalence and severe disease. The goal of this paper was to examine trends over the past 20 years in Anopheles species composition, density, blood-feeding behaviour, and P. falciparum sporozoite transmission along the coast of Kenya. METHODS: Using data collected from 1990 to 2010, vector density, species composition, blood-feeding patterns, and malaria transmission intensity was examined along the Kenyan coast. Mosquitoes were identified to species, based on morphological characteristics and DNA extracted from Anopheles gambiae for amplification. Using negative binomial generalized estimating equations, mosquito abundance over the period were modelled while adjusting for season. A multiple logistic regression model was used to analyse the sporozoite rates. RESULTS: Results show that in some areas along the Kenyan coast, Anopheles arabiensis and Anopheles merus have replaced An. gambiae sensu stricto (s.s.) and Anopheles funestus as the major mosquito species. Further, there has been a shift from human to animal feeding for both An. gambiae sensu lato (s.l.) (99% to 16%) and An. funestus (100% to 3%), and P. falciparum sporozoite rates have significantly declined over the last 20 years, with the lowest sporozoite rates being observed in 2007 (0.19%) and 2008 (0.34%). There has been, on average, a significant reduction in the abundance of An. gambiae s.l. over the years (IRR = 0.94, 95% CI 0.90-0.98), with the density standing at low levels of an average 0.006 mosquitoes/house in the year 2010. CONCLUSION: Reductions in the densities of the major malaria vectors and a shift from human to animal feeding have contributed to the decreased burden of malaria along the Kenyan coast. Vector species composition remains heterogeneous but in many areas An. arabiensis has replaced An. gambiae as the major malaria vector. This has important implications for malaria epidemiology and control given that this vector predominately rests and feeds on humans outdoors. Strategies for vector control need to continue focusing on tools for protecting residents inside houses but additionally employ outdoor control tools because these are essential for further reducing the levels of malaria transmission.


Asunto(s)
Anopheles/clasificación , Anopheles/crecimiento & desarrollo , Vectores de Enfermedades , Malaria Falciparum/epidemiología , Malaria Falciparum/transmisión , Animales , Anopheles/parasitología , Anopheles/fisiología , Conducta Alimentaria , Femenino , Humanos , Kenia/epidemiología , Plasmodium falciparum/aislamiento & purificación , Densidad de Población
17.
J Anim Ecol ; 82(1): 166-74, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23163565

RESUMEN

Anopheles gambiae sensu stricto is the most important vector of malaria in Africa although relatively little is known about the density-dependent processes determining its population size. Mosquito larval density was manipulated under semi-natural conditions using artificial larval breeding sites placed in the field in coastal Kenya; two experiments were conducted: one manipulating the density of a single cohort of larvae across a range of densities and the other employing fewer densities but with the treatments crossed with four treatments manipulating predator access. In the first experiment, larval survival, development rate and the size of the adult mosquito all decreased with larval density (controlling for block effects between 23% and 31% of the variance in the data could be explained by density). In the second experiment, the effects of predator manipulation were not significant, but again we observed strong density dependence in larval survival (explaining 30% of the variance). The results are compared with laboratory studies of A. gambiae larval competition and the few other studies conducted in the field, and the consequences for malaria control are discussed.


Asunto(s)
Anopheles/fisiología , Malaria/transmisión , África , Animales , Humanos , Insectos Vectores , Larva/fisiología , Densidad de Población
18.
J Vector Borne Dis ; 50(1): 45-50, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23703439

RESUMEN

BACKGROUND & OBJECTIVES: The use of insecticides to eliminate mosquito larvae from ground pools may disrupt atural predator-induced control of mosquito larvae. Detrimental effects on predators may be directly from toxicity or by eliminating prey organisms. Identifying the principal predators responsible for mosquito suppression is needed to select non-target indicator species for insecticide studies. In this study, we sought to determine trophic level interactions between predators and immature stages of Anopheles gambiae Giles mosquitoes under experimental conditions in the coastal region of Kenya. METHODS: To identify effective predation pattern, a series of prey choice experiments was conducted. The relative abilities of five common species of aquatic insects found in the malaria-endemic coastal region of Kenya were assessed in a series of experiments. Experiments were conducted in semi-field conditions at Jaribuni, near the sites of insect collection. RESULTS: In single predator experiments, notonectids consumed most of the mosquito larvae; hydrometrids consumed about half of the mosquito larvae in treatments. Veliids and gerrids had significant, but small effects on larval survivorship. Dytiscids did not have a significant effect on mosquito larvae survivorship. In a two-predator experiment, notonectids significantly decreased survivorship of dytiscids without a change in suppressive effects on mosquito larvae. Of the five common predators evaluated, notonectids were clearly the most voracious consumers of mosquito larvae. The predation pressure on mosquito larvae was not affected by the addition of additional prey items, consisting of small dytiscid beetles. The importance of this notonectid species in coastal Kenya suggests that it would be a valuable non-target indicator species for insecticide studies. Hydrometrids were also efficient at consuming mosquito larvae. INTERPRETATION & CONCLUSION: Of the five common predators from the Kenyan coast evaluated in this study, notonectids were the most voracious consumers of immature mosquitoes. Their predation pressure on mosquito larvae was not affected by the addition of additional prey items, consisting of small dytiscid beetles.


Asunto(s)
Anopheles/crecimiento & desarrollo , Heterópteros/fisiología , Animales , Conducta Alimentaria , Kenia , Larva/crecimiento & desarrollo , Conducta Predatoria
19.
Heliyon ; 9(10): e20966, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37876477

RESUMEN

Background: Vector control is an important approach in the control of most parasitic and vector-borne diseases including malaria, and schistosomiasis. Distribution of these two infections often overlaps and in such areas it's more economically viable to employ an integrated approach in the control of their vectors which largely shares the same breeding ecosystem. We carried out a baseline epidemiological and vector surveys for malaria and schistosomiasis in Mwea, Kirinyaga County, in preparation for the upscaling of integrated vector management (IVM) for the two diseases. Methods: This was a repeated cross sectional survey, where mosquito and snails were sampled during dry and wet seasons in three different ecological zones, Kiamaciri, Thiba and Murinduko to identify possible breeding sites. Mosquito larvae were collected using standard dippers, adults using CDC miniature light traps while snail vectors were sampled using standard snail scoops in different breeding habitats. A total of 1200 pupils from 12 primary schools were tested for malaria using rapid diagnostic tests (Malaria Pf/PAN Ag combo). Stool samples were processed using the Kato Katz technique for intestinal schistosomiasis. Results: The overall prevalence of intestinal schistosomiasis was 9.08 % (95 % CI: 07.00-11.00), with Kiamaciri zone recording the highest prevalence at 19 % (95%CI: 15.00-23.00) and Murinduko zone the least at 0.17 % (95%CI: 0.00-0.01). Majority of the infections were of light intensity 78.9 % (95%CI: 70.04-86.13). There was no positive malaria case detected in this study. Of the 3208 adult mosquitoes sampled during the dry season, 20.6 % (95 % CI: 19.25-22.08) were Anopheles gambiae s.l while 79.4 % (95 % CI: 77.92-80.75) were culicines. During the wet season, 3378 adult mosquitoes were collected, of which 14.7 % (95 % CI: 13.56-15.98) were Anopheles gambiae s.l and 85.3 % (95 % CI: 84.02-86.44) culicines. Overall, 4085 mosquito larvae were collected during the two seasons, of which, 57.3 % and 42.7 % were anopheles and culicine respectively. Majority of the larvae (85.1 % (95%CI: 84.01-86.10) were collected during the wet season, with only 14.9 % (95%CI: 14.10-16.00) being collected during the dry season. A total of 2292 fresh water vector snails were collected with a majority (69.6 % (95%CI: 68.00-71.10) being Biomphalaria pffeiferi responsible for transmission of intestinal schistosomiasis. Conclusion: This study demonstrates that intestinal schistosomiasis is prevalent in Kiamaciri and Thiba zones, and points to the possibility of active transmission of schistosomiasis in Murinduko zone. Malaria vectors were predominantly observed in all sites despite there being no malaria positive case. Culex quinquefaciatus responsible for the spread of several arboviruses was also observed. The presence of these vectors may lead to future disease outbreaks in the area if concerted control initiatives are not undertaken. The disease vectors shared the same breeding sites and thus its economical and feasible to adopt an integrated vector management approach in control efforts for these disease in the study area.

20.
Wellcome Open Res ; 8: 151, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38957296

RESUMEN

Background: Protein analysis using matrix-assisted laser desorption/ionisation time-of-flight mass-spectrometry (MALDI-TOF MS) represents a promising tool for entomological surveillance. In this study we tested the discriminative power of this tool for measuring species and blood meal source of main Afrotropical malaria vectors on the Kenyan coast. Methods: Mosquito collections were conducted along the coastal region of Kenya. MALDI-TOF MS spectra were obtained from each individual mosquito's cephalothorax as well as the abdomens of blood-engorged mosquitoes. The same mosquitoes were also processed using gold standard tests: polymerase chain reaction (PCR) for species identification and enzyme linked immunosorbent assay (ELISA) for blood meal source identification. Results: Of the 2,332 mosquitoes subjected to MALDI-TOF MS, 85% (1,971/2,332) were considered for database creation and validation. There was an overall accuracy of 97.5% in the identification of members of the An. gambiae ( An. gambiae, 100%; An. arabiensis, 91.9%; An. merus, 97.5%; and An. quadriannulatus, 90.2%) and An. funestus ( An. funestus, 94.2%; An. rivulorum, 99.4%; and An. leesoni, 94.1%) complexes. Furthermore, MALDI-TOF MS also provided accurate (94.5% accuracy) identification of blood host sources across all mosquito species. Conclusions: This study provides further evidence of the discriminative power of MALDI-TOF MS to identify sibling species and blood meal source of Afrotropical malaria vectors, further supporting its utility in entomological surveillance. The low cost per sample (<0.2USD) and high throughput nature of the method represents a cost-effective alternative to molecular methods and could enable programs to increase the number of samples analysed and therefore improve the data generated from surveillance activities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA