Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 24(3): 1869-1876, 2022 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-34989380

RESUMEN

Ortho-benzyne is a potentially important precursor for polycyclic aromatic hydrocarbon formation, but much is still unknown about its chemistry. In this work, we report on a combined experimental and theoretical study of the o-benzyne + acetylene reaction and employ double imaging threshold photoelectron photoion coincidence spectroscopy to investigate the reaction products with isomer specificity. Based on photoion mass-selected threshold photoelectron spectra, Franck-Condon simulations, and ionization cross section calculations, we conclude that phenylacetylene and benzocyclobutadiene (PA : BCBdiene) are formed at a non-equilibrium ratio of 2 : 1, respectively, in a pyrolysis microreactor at a temperature of 1050 K and a pressure of ∼20 mbar. The C8H6 potential energy surface (PES) is explored to rationalize the formation of the reaction products. Previously unidentified pathways have been found by considering the open-shell singlet (OSS) character of various C8H6 reactive intermediates. Based on the PES data, a kinetic model is constructed to estimate equilibrium abundances of the two products. New insights into the reaction mechanism - with a focus on the OSS intermediates - and the products formed in the o-benzyne + acetylene reaction provide a greater level of understanding of the o-benzyne reactivity during the formation of aromatic hydrocarbons in combustion environments as well as in outflows of carbon-rich stars.

2.
J Phys Chem A ; 122(30): 6321-6327, 2018 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-29993251

RESUMEN

Microwave-millimeter/submillimeter wave double-resonance spectroscopy has been developed with the use of technology typically employed in chirped pulse Fourier transform microwave spectroscopy and fast-sweep direct absorption (sub)millimeter-wave spectroscopy. This technique offers the high sensitivity provided by millimeter/submillimeter fast-sweep techniques with the rapid data acquisition offered by chirped pulse Fourier transform microwave spectrometers. Rather than detecting the movement of population as is observed in a traditional double-resonance experiment, instead we detected the splitting of spectral lines arising from the AC Stark effect. This new technique will prove invaluable when assigning complicated rotational spectra of complex molecules. The experimental design is presented along with the results from the double-resonance spectra of methanol as a proof-of-concept for this technique.

3.
J Phys Chem Lett ; 11(8): 2859-2863, 2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32202794

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) play an important role in chemistry both in the terrestrial setting and in the interstellar medium. Various, albeit often inefficient, chemical mechanisms have been proposed to explain PAH formation, but few yield polycyclic hydrocarbons cleanly. Alternative and quite promising pathways have been suggested to address these shortcomings with key starting reactants including resonance stabilized radicals (RSRs) and o-benzyne. Here we report on a combined experimental and theoretical study of the reaction allyl + o-benzyne. Indene was found to be the primary product and statistical modeling predicts only 0.1% phenylallene and 0.1% 3-phenyl-1-propyne as side products. The quantitative and likely barrierless formation of indene yields important insights into the role resonance stabilized radicals play in the formation of polycyclic hydrocarbons.

4.
Rev Sci Instrum ; 87(11): 113109, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27910611

RESUMEN

Direct absorption spectroscopy has been the mainstay for spectral acquisition in the millimeter and submillimeter wavelength regimes because of the sensitivity offered by standard hot electron bolometer detectors. However, this approach is limited in its utility because of the slow spectral acquisition speeds. A few rapid acquisition techniques that offer reasonable levels of sensitivity have been developed, but these rely on specialized and costly equipment. We present here a new instrument design for a (sub)millimeter spectrometer that offers both rapid spectral acquisition and highly sensitive detection while using equipment from existing chirped-pulse Fourier transform spectrometers and direct absorption spectrometers. We report on spectrometer design and performance and compare the results to standard lock-in detection techniques.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA