Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 187(12): 2952-2968.e13, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38795705

RESUMEN

Recent studies suggest that human-associated bacteria interact with host-produced steroids, but the mechanisms and physiological impact of such interactions remain unclear. Here, we show that the human gut bacteria Gordonibacter pamelaeae and Eggerthella lenta convert abundant biliary corticoids into progestins through 21-dehydroxylation, thereby transforming a class of immuno- and metabo-regulatory steroids into a class of sex hormones and neurosteroids. Using comparative genomics, homologous expression, and heterologous expression, we identify a bacterial gene cluster that performs 21-dehydroxylation. We also uncover an unexpected role for hydrogen gas production by gut commensals in promoting 21-dehydroxylation, suggesting that hydrogen modulates secondary metabolism in the gut. Levels of certain bacterial progestins, including allopregnanolone, better known as brexanolone, an FDA-approved drug for postpartum depression, are substantially increased in feces from pregnant humans. Thus, bacterial conversion of corticoids into progestins may affect host physiology, particularly in the context of pregnancy and women's health.


Asunto(s)
Microbioma Gastrointestinal , Glucocorticoides , Hidrógeno , Progestinas , Humanos , Progestinas/metabolismo , Hidrógeno/metabolismo , Femenino , Glucocorticoides/metabolismo , Embarazo , Animales , Familia de Multigenes , Heces/microbiología , Pregnanolona/metabolismo , Ratones
2.
Nat Chem Biol ; 17(10): 1046-1056, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34552222

RESUMEN

Human-associated microorganisms play a vital role in human health, and microbial imbalance has been linked to a wide range of disease states. In this Review, we explore recent efforts to progress from correlative studies that identify microorganisms associated with human disease to experiments that establish causal relationships between microbial products and host phenotypes. We propose that successful efforts to uncover phenotypes often follow a chain of evidence that proceeds from (1) association studies; to (2) observations in germ-free animals and antibiotic-treated animals and humans; to (3) fecal microbiota transplants (FMTs); to (4) identification of strains; and then (5) molecules that elicit a phenotype. Using this experimental 'funnel' as our guide, we explore how the microbiota contributes to metabolic disorders and hypertension, infections, and neurological conditions. We discuss the potential to use FMTs and microbiota-inspired therapies to treat human disease as well as the limitations of these approaches.


Asunto(s)
Enfermedades Transmisibles/microbiología , Interacciones Microbiota-Huesped/fisiología , Microbiota/fisiología , Animales , Antiinfecciosos/farmacología , Trasplante de Microbiota Fecal , Vida Libre de Gérmenes , Humanos
3.
Nat Chem Biol ; 16(3): 318-326, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32042200

RESUMEN

Bile salt hydrolase (BSH) enzymes are widely expressed by human gut bacteria and catalyze the gateway reaction leading to secondary bile acid formation. Bile acids regulate key metabolic and immune processes by binding to host receptors. There is an unmet need for a potent tool to inhibit BSHs across all gut bacteria to study the effects of bile acids on host physiology. Here, we report the development of a covalent pan-inhibitor of gut bacterial BSHs. From a rationally designed candidate library, we identified a lead compound bearing an alpha-fluoromethyl ketone warhead that modifies BSH at the catalytic cysteine residue. This inhibitor abolished BSH activity in conventional mouse feces. Mice gavaged with a single dose of this compound displayed decreased BSH activity and decreased deconjugated bile acid levels in feces. Our studies demonstrate the potential of a covalent BSH inhibitor to modulate bile acid composition in vivo.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/metabolismo , Microbioma Gastrointestinal/fisiología , Amidohidrolasas/fisiología , Animales , Bacterias/enzimología , Ácidos y Sales Biliares/metabolismo , Diseño de Fármacos , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Bibliotecas de Moléculas Pequeñas
4.
J Am Chem Soc ; 139(10): 3736-3746, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-28256128

RESUMEN

A phase transfer catalyzed asymmetric alkylation of anthrones with cyclic allylic bromides using quinidine- or quinine-derived catalysts is described. Utilizing mild basic conditions and as low as 0.5 mol % catalyst loading, and achieving up to >99:1 dr selectivity, this asymmetric reaction was successfully applied to produce enantioselectively (-)- and (+)-viridicatumtoxins B, and thus allowed assignment of the absolute configuration of this naturally occurring antibiotic. While the developed asymmetric synthesis of C10 substituted anthrones is anticipated to find wider applications in organic synthesis, its immediate application to the construction of a variety of designed enantiopure analogues of viridicatumtoxin B led to the discovery of highly potent, yet simpler analogues of the molecule. These studies are expected to facilitate drug discovery and development efforts toward new antibacterial agents.


Asunto(s)
Antracenos/química , Antibacterianos/farmacología , Tetraciclinas/farmacología , Alquilación , Antibacterianos/síntesis química , Antibacterianos/química , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular , Estereoisomerismo , Tetraciclinas/síntesis química , Tetraciclinas/química
5.
J Am Chem Soc ; 139(44): 15868-15877, 2017 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-29064688

RESUMEN

An improved and enantioselective total synthesis of antibiotic CJ-16,264 through a practical kinetic resolution and an iodolactonization reaction to form the iodo pyrrolizidinone fragment of the molecule is described. A series of racemic and enantiopure analogues of CJ-16,264 was designed and synthesized through the developed synthetic technologies and tested against drug-resistant bacterial strains. These studies led to interesting structure-activity relationships and the identification of a number of simpler, and yet equipotent, or even more potent, antibacterial agents than the natural product, thereby setting the foundation for further investigations in the quest for new anti-infective drugs.


Asunto(s)
Antibacterianos/síntesis química , Antibacterianos/farmacología , Lactonas/síntesis química , Lactonas/farmacología , Pirazoles/síntesis química , Pirazoles/farmacología , Antibacterianos/química , Técnicas de Química Sintética/métodos , Bacterias Grampositivas/efectos de los fármacos , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Humanos , Lactonas/química , Pruebas de Sensibilidad Microbiana , Pirazoles/química , Estereoisomerismo , Relación Estructura-Actividad
6.
ACS Chem Biol ; 16(8): 1401-1412, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34279901

RESUMEN

Bile acids play crucial roles in host physiology by acting both as detergents that aid in digestion and as signaling molecules that bind to host receptors. Gut bacterial bile salt hydrolase (BSH) enzymes perform the gateway reaction leading to the conversion of host-produced primary bile acids into bacterially modified secondary bile acids. Small molecule probes that target BSHs will help elucidate the causal roles of these metabolites in host physiology. We previously reported the development of a covalent BSH inhibitor with low gut permeability. Here, we build on our previous findings and describe the development of a second-generation gut-restricted BSH inhibitor with enhanced potency, reduced off-target effects, and durable in vivo efficacy. Structure-activity relationship (SAR) studies focused on the bile acid core identified a compound, AAA-10, containing a C3-sulfonated lithocholic acid scaffold and an alpha-fluoromethyl ketone warhead as a potent pan-BSH inhibitor. This compound inhibits BSH activity in mouse and human fecal slurry, bacterial cultures, and purified BSH proteins and displays reduced toxicity against mammalian cells compared to first generation compounds. Oral administration of AAA-10 to wild-type mice for 5 days resulted in a decrease in the abundance of the secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA) in the mouse GI tract with low systemic exposure of AAA-10, demonstrating that AAA-10 is an effective tool for inhibiting BSH activity and modulating bile acid pool composition in vivo.


Asunto(s)
Amidohidrolasas/antagonistas & inhibidores , Proteínas Bacterianas/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Ácido Litocólico/análogos & derivados , Ácido Litocólico/farmacología , Animales , Bacterias/efectos de los fármacos , Ácidos y Sales Biliares/metabolismo , Línea Celular Tumoral , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/toxicidad , Heces/química , Heces/enzimología , Humanos , Ácido Litocólico/toxicidad , Masculino , Ratones Endogámicos C57BL , Estructura Molecular , Relación Estructura-Actividad
7.
Cell Host Microbe ; 29(9): 1366-1377.e9, 2021 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-34416161

RESUMEN

Bile acids act as signaling molecules that regulate immune homeostasis, including the differentiation of CD4+ T cells into distinct T cell subsets. The bile acid metabolite isoallolithocholic acid (isoalloLCA) enhances the differentiation of anti-inflammatory regulatory T cells (Treg cells) by facilitating the formation of a permissive chromatin structure in the promoter region of the transcription factor forkhead box P3 (Foxp3). Here, we identify gut bacteria that synthesize isoalloLCA from 3-oxolithocholic acid and uncover a gene cluster responsible for the conversion in members of the abundant human gut bacterial phylum Bacteroidetes. We also show that the nuclear hormone receptor NR4A1 is required for the effect of isoalloLCA on Treg cells. Moreover, the levels of isoalloLCA and its biosynthetic genes are significantly reduced in patients with inflammatory bowel diseases, suggesting that isoalloLCA and its bacterial producers may play a critical role in maintaining immune homeostasis in humans.


Asunto(s)
Bacteroidetes/metabolismo , Ácidos y Sales Biliares/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Fenantrenos/metabolismo , Linfocitos T Reguladores/inmunología , Diferenciación Celular/fisiología , Cromatina/metabolismo , Factores de Transcripción Forkhead/genética , Humanos , Enfermedades Inflamatorias del Intestino/patología , Familia de Multigenes/genética , Regiones Promotoras Genéticas/genética , Transducción de Señal/fisiología , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/inmunología , Linfocitos T Reguladores/citología
8.
ACS Infect Dis ; 3(11): 854-865, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-28942642

RESUMEN

The continuing rise of multidrug resistant pathogens has made it clear that in the absence of new antibiotics we are moving toward a "postantibiotic" world, in which even routine infections will become increasingly untreatable. There is a clear need for the development of new antibiotics with truly novel mechanisms of action to combat multidrug resistant pathogens. Experimental evolution to resistance can be a useful tactic for the characterization of the biochemical mechanism of action for antibiotics of interest. Herein, we demonstrate that the use of a diverse panel of strains with well-annotated reference genomes improves the success of using experimental evolution to characterize the mechanism of action of a novel pyrrolizidinone antibiotic analog. Importantly, we used experimental evolution under conditions that favor strongly polymorphic populations to adapt a panel of three substantially different Gram-positive species (lab strain Bacillus subtilis and clinical strains methicillin-resistant Staphylococcus aureus MRSA131 and Enterococcus faecalis S613) to produce a sufficiently diverse set of evolutionary outcomes. Comparative whole genome sequencing (WGS) between the susceptible starting strain and the resistant strains was then used to identify the genetic changes within each species in response to the pyrrolizidinone. Taken together, the adaptive response across a range of organisms allowed us to develop a readily testable hypothesis for the mechanism of action of the CJ-16 264 analog. In conjunction with mitochondrial inhibition studies, we were able to elucidate that this novel pyrrolizidinone antibiotic is an electron transport chain (ETC) inhibitor. By studying evolution to resistance in a panel of different species of bacteria, we have developed an enhanced method for the characterization of new lead compounds for the discovery of new mechanisms of action.


Asunto(s)
Antibacterianos/farmacología , Pirrolidinonas/farmacología , Transaminasas/efectos de los fármacos , Antibacterianos/química , Evolución Biológica , Farmacorresistencia Bacteriana Múltiple , Variación Genética , Genoma Bacteriano , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Consumo de Oxígeno , Pirrolidinonas/química , Relación Estructura-Actividad , Transaminasas/genética
9.
Cell Chem Biol ; 24(5): 576-588.e6, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28434876

RESUMEN

Riboswitches are bacterial-specific, broadly conserved, non-coding RNA structural elements that control gene expression of numerous metabolic pathways and transport functions essential for cell growth. As such, riboswitch inhibitors represent a new class of potential antibacterial agents. Recently, we identified ribocil-C, a highly selective inhibitor of the flavin mononucleotide (FMN) riboswitch that controls expression of de novo riboflavin (RF, vitamin B2) biosynthesis in Escherichia coli. Here, we provide a mechanistic characterization of the antibacterial effects of ribocil-C as well as of roseoflavin (RoF), an antimetabolite analog of RF, among medically significant Gram-positive bacteria, including methicillin-resistant Staphylococcus aureus (MRSA) and Enterococcus faecalis. We provide genetic, biophysical, computational, biochemical, and pharmacological evidence that ribocil-C and RoF specifically inhibit dual FMN riboswitches, separately controlling RF biosynthesis and uptake processes essential for MRSA growth and pathogenesis. Such a dual-targeting mechanism is specifically required to develop broad-spectrum Gram-positive antibacterial agents targeting RF metabolism.


Asunto(s)
Mononucleótido de Flavina/genética , Homeostasis/efectos de los fármacos , Pirimidinas/farmacología , Riboflavina/análogos & derivados , Riboflavina/metabolismo , Riboswitch/efectos de los fármacos , Staphylococcus aureus/efectos de los fármacos , Animales , Antibacterianos/farmacología , Secuencia de Bases , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/metabolismo , Staphylococcus aureus Resistente a Meticilina/fisiología , Ratones , Modelos Moleculares , Terapia Molecular Dirigida , Conformación Proteica , Riboflavina/farmacología , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Staphylococcus aureus/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA