Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Circ Res ; 133(4): 353-365, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37462036

RESUMEN

BACKGROUND: Despite advances in treatment, myocardial infarction (MI) is a leading cause of heart failure and death worldwide, with both ischemia and reperfusion (I/R) causing cardiac injury. A previous study using a mouse model of nonreperfused MI showed activation of brown adipose tissue (BAT). Recent studies showed that molecules secreted by BAT target the heart. We investigated whether BAT attenuates cardiac injury in I/R and sought to identify potential cardioprotective proteins secreted by BAT. METHODS: Myocardial I/R surgery with or without BAT transplantation was performed in wild-type (WT) mice and in mice with impaired BAT function (uncoupling protein 1 [Ucp1]-deficient mice). To identify potential cardioprotective factors produced by BAT, RNA-seq (RNA sequencing) was performed in BAT from WT and Ucp1-/- mice. Subsequently, myocardial I/R surgery with or without BAT transplantation was performed in Bmp3b (bone morphogenetic protein 3b)-deficient mice, and WT mice subjected to myocardial I/R were treated using BMP3b. RESULTS: Dysfunction of BAT in mice was associated with larger MI size after I/R; conversely, augmenting BAT by transplantation decreased MI size. We identified Bmp3b as a protein secreted by BAT after I/R. Compared with WT mice, Bmp3b-deficient mice developed larger MIs. Increasing functional BAT by transplanting BAT from WT mice to Bmp3b-deficient mice reduced I/R injury whereas transplanting BAT from Bmp3b-deficient mice did not. Treatment of WT mice with BMP3b before reperfusion decreased MI size. The cardioprotective effect of BMP3b was mediated through SMAD1/5/8. In humans, the plasma level of BMP3b increased after MI and was positively correlated with the extent of cardiac injury. CONCLUSIONS: The results of this study suggest a cardioprotective role of BAT and BMP3b, a protein secreted by BAT, in a model of I/R injury. Interventions increasing BMP3b levels or targeting Smad 1/5 may represent novel therapeutic approaches to decrease myocardial damage in I/R injury.


Asunto(s)
Enfermedad de la Arteria Coronaria , Factor 10 de Diferenciación de Crecimiento , Infarto del Miocardio , Isquemia Miocárdica , Daño por Reperfusión Miocárdica , Animales , Humanos , Ratones , Tejido Adiposo Pardo/metabolismo , Factor 10 de Diferenciación de Crecimiento/metabolismo , Ratones Endogámicos C57BL , Infarto del Miocardio/metabolismo , Daño por Reperfusión Miocárdica/genética , Daño por Reperfusión Miocárdica/prevención & control , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Reperfusión
2.
Nature ; 573(7774): 430-433, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31511695

RESUMEN

Fibrosis is observed in nearly every form of myocardial disease1. Upon injury, cardiac fibroblasts in the heart begin to remodel the myocardium by depositing excess extracellular matrix, resulting in increased stiffness and reduced compliance of the tissue. Excessive cardiac fibrosis is an important factor in the progression of various forms of cardiac disease and heart failure2. However, clinical interventions and therapies that target fibrosis remain limited3. Here we demonstrate the efficacy of redirected T cell immunotherapy to specifically target pathological cardiac fibrosis in mice. We find that cardiac fibroblasts that express a xenogeneic antigen can be effectively targeted and ablated by adoptive transfer of antigen-specific CD8+ T cells. Through expression analysis of the gene signatures of cardiac fibroblasts obtained from healthy and diseased human hearts, we identify an endogenous target of cardiac fibroblasts-fibroblast activation protein. Adoptive transfer of T cells that express a chimeric antigen receptor against fibroblast activation protein results in a significant reduction in cardiac fibrosis and restoration of function after injury in mice. These results provide proof-of-principle for the development of immunotherapeutic drugs for the treatment of cardiac disease.


Asunto(s)
Linfocitos T CD8-positivos , Fibrosis Endomiocárdica/terapia , Inmunoterapia Adoptiva , Animales , Antígenos de Superficie/inmunología , Linfocitos T CD8-positivos/inmunología , Fibrosis Endomiocárdica/inmunología , Fibroblastos/inmunología , Humanos , Masculino , Ratones , Ovalbúmina/inmunología , Cicatrización de Heridas
4.
Proc Natl Acad Sci U S A ; 112(43): E5844-53, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26460017

RESUMEN

Inherited retinal degenerations cause progressive loss of photoreceptor neurons with eventual blindness. Corrective or neuroprotective gene therapies under development could be delivered at a predegeneration stage to prevent the onset of disease, as well as at intermediate-degeneration stages to slow the rate of progression. Most preclinical gene therapy successes to date have been as predegeneration interventions. In many animal models, as well as in human studies, to date, retinal gene therapy administered well after the onset of degeneration was not able to modify the rate of progression even when successfully reversing dysfunction. We evaluated consequences of gene therapy delivered at intermediate stages of disease in a canine model of X-linked retinitis pigmentosa (XLRP) caused by a mutation in the Retinitis Pigmentosa GTPase Regulator (RPGR) gene. Spatiotemporal natural history of disease was defined and therapeutic dose selected based on predegeneration results. Then interventions were timed at earlier and later phases of intermediate-stage disease, and photoreceptor degeneration monitored with noninvasive imaging, electrophysiological function, and visual behavior for more than 2 y. All parameters showed substantial and significant arrest of the progressive time course of disease with treatment, which resulted in long-term improved retinal function and visual behavior compared with control eyes. Histology confirmed that the human RPGR transgene was stably expressed in photoreceptors and associated with improved structural preservation of rods, cones, and ON bipolar cells together with correction of opsin mislocalization. These findings in a clinically relevant large animal model demonstrate the long-term efficacy of RPGR gene augmentation and substantially broaden the therapeutic window for intervention in patients with RPGR-XLRP.


Asunto(s)
Terapia Genética , Células Fotorreceptoras de Vertebrados/metabolismo , Retina/metabolismo , Degeneración Retiniana/terapia , Visión Ocular , Animales , Modelos Animales de Enfermedad , Perros , Degeneración Retiniana/fisiopatología
5.
Cell Mol Bioeng ; 16(4): 369-381, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37811005

RESUMEN

Introduction: Pediatric subglottic stenosis (SGS) results from prolonged intubation where scar tissue leads to airway narrowing that requires invasive surgery. We have recently discovered that modulating the laryngotracheal microbiome can prevent SGS. Herein, we show how our patent-pending antimicrobial peptide-eluting endotracheal tube (AMP-ET) effectively modulates the local airway microbiota resulting in reduced inflammation and stenosis resolution. Materials and Methods: We fabricated mouse-sized ETs coated with a polymeric AMP-eluting layer, quantified AMP release over 10 days, and validated bactericidal activity for both planktonic and biofilm-resident bacteria against Staphylococcus aureus and Pseudomonas aeruginosa. Ex vivo testing: we inserted AMP-ETs and ET controls into excised laryngotracheal complexes (LTCs) of C57BL/6 mice and assessed biofilm formation after 24 h. In vivo testing: AMP-ETs and ET controls were inserted in sham or SGS-induced LTCs, which were then implanted subcutaneously in receptor mice, and assessed for immune response and SGS severity after 7 days. Results: We achieved reproducible, linear AMP release at 1.16 µg/day resulting in strong bacterial inhibition in vitro and ex vivo. In vivo, SGS-induced LTCs exhibited a thickened scar tissue typical of stenosis, while the use of AMP-ETs abrogated stenosis. Notably, SGS airways exhibited high infiltration of T cells and macrophages, which was reversed with AMP-ET treatment. This suggests that by modulating the microbiome, AMP-ETs reduce macrophage activation and antigen specific T cell responses resolving stenosis progression. Conclusion: We developed an AMP-ET platform that reduces T cell and macrophage responses and reduces SGS in vivo via airway microbiome modulation. Supplementary Information: The online version contains supplementary material available at 10.1007/s12195-023-00769-9.

6.
J Clin Invest ; 133(9)2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36927960

RESUMEN

During the development of heart failure (HF), the capacity for cardiomyocyte (CM) fatty acid oxidation (FAO) and ATP production is progressively diminished, contributing to pathologic cardiac hypertrophy and contractile dysfunction. Receptor-interacting protein 140 (RIP140, encoded by Nrip1) has been shown to function as a transcriptional corepressor of oxidative metabolism. We found that mice with striated muscle deficiency of RIP140 (strNrip1-/-) exhibited increased expression of a broad array of genes involved in mitochondrial energy metabolism and contractile function in heart and skeletal muscle. strNrip1-/- mice were resistant to the development of pressure overload-induced cardiac hypertrophy, and CM-specific RIP140-deficient (csNrip1-/-) mice were protected against the development of HF caused by pressure overload combined with myocardial infarction. Genomic enhancers activated by RIP140 deficiency in CMs were enriched in binding motifs for transcriptional regulators of mitochondrial function (estrogen-related receptor) and cardiac contractile proteins (myocyte enhancer factor 2). Consistent with a role in the control of cardiac fatty acid oxidation, loss of RIP140 in heart resulted in augmented triacylglyceride turnover and fatty acid utilization. We conclude that RIP140 functions as a suppressor of a transcriptional regulatory network that controls cardiac fuel metabolism and contractile function, representing a potential therapeutic target for the treatment of HF.


Asunto(s)
Insuficiencia Cardíaca , Proteína de Interacción con Receptores Nucleares 1 , Animales , Ratones , Cardiomegalia/metabolismo , Metabolismo Energético/genética , Ácidos Grasos/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Miocitos Cardíacos/metabolismo , Proteína de Interacción con Receptores Nucleares 1/genética , Proteína de Interacción con Receptores Nucleares 1/metabolismo
7.
Cell Metab ; 34(11): 1749-1764.e7, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36223763

RESUMEN

Pharmacologic activation of branched-chain amino acid (BCAA) catabolism is protective in models of heart failure (HF). How protection occurs remains unclear, although a causative block in cardiac BCAA oxidation is widely assumed. Here, we use in vivo isotope infusions to show that cardiac BCAA oxidation in fact increases, rather than decreases, in HF. Moreover, cardiac-specific activation of BCAA oxidation does not protect from HF even though systemic activation does. Lowering plasma and cardiac BCAAs also fails to confer significant protection, suggesting alternative mechanisms of protection. Surprisingly, activation of BCAA catabolism lowers blood pressure (BP), a known cardioprotective mechanism. BP lowering occurred independently of nitric oxide and reflected vascular resistance to adrenergic constriction. Mendelian randomization studies revealed that elevated plasma BCAAs portend higher BP in humans. Together, these data indicate that BCAA oxidation lowers vascular resistance, perhaps in part explaining cardioprotection in HF that is not mediated directly in cardiomyocytes.


Asunto(s)
Aminoácidos de Cadena Ramificada , Insuficiencia Cardíaca , Humanos , Presión Sanguínea , Aminoácidos de Cadena Ramificada/metabolismo , Corazón , Insuficiencia Cardíaca/metabolismo , Metabolismo Energético
8.
J Clin Invest ; 131(20)2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34403369

RESUMEN

In recent decades, treatments for myocardial infarction (MI), such as stem and progenitor cell therapy, have attracted considerable scientific and clinical attention but failed to improve patient outcomes. These efforts indicate that more rigorous mechanistic and functional testing of potential MI therapies is required. Recent studies have suggested that augmenting post-MI lymphatic growth via VEGF-C administration improves cardiac function. However, the mechanisms underlying this proposed therapeutic approach remain vague and untested. To more rigorously test the role of lymphatic vessel growth after MI, we examined the post-MI cardiac function of mice in which lymphangiogenesis had been blocked genetically by pan-endothelial or lymphatic endothelial loss of the lymphangiogenic receptor VEGFR3 or global loss of the VEGF-C and VEGF-D ligands. The results obtained using all 3 genetic approaches were highly concordant and demonstrated that loss of lymphatic vessel growth did not impair left ventricular ejection fraction 2 weeks after MI in mice. We observed a trend toward excess fluid in the infarcted region of the left ventricle, but immune cell infiltration and clearance were unchanged with loss of expanded lymphatics. These studies refute the hypothesis that lymphangiogenesis contributes significantly to cardiac function after MI, and suggest that any effect of exogenous VEGF-C is likely to be mediated by nonlymphangiogenic mechanisms.


Asunto(s)
Corazón/fisiopatología , Linfangiogénesis/fisiología , Infarto del Miocardio/fisiopatología , Animales , Ratones , Infarto del Miocardio/terapia , Receptor 3 de Factores de Crecimiento Endotelial Vascular/fisiología , Función Ventricular Izquierda
9.
Circ Heart Fail ; 14(1): e007684, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33356362

RESUMEN

BACKGROUND: Accumulating evidence suggests that the failing heart reprograms fuel metabolism toward increased utilization of ketone bodies and that increasing cardiac ketone delivery ameliorates cardiac dysfunction. As an initial step toward development of ketone therapies, we investigated the effect of chronic oral ketone ester (KE) supplementation as a prevention or treatment strategy in rodent heart failure models. METHODS: Two independent rodent heart failure models were used for the studies: transverse aortic constriction/myocardial infarction (MI) in mice and post-MI remodeling in rats. Seventy-five mice underwent a prevention treatment strategy with a KE comprised of hexanoyl-hexyl-3-hydroxybutyrate KE (KE-1) diet, and 77 rats were treated in either a prevention or treatment regimen using a commercially available ß-hydroxybutyrate-(R)-1,3-butanediol monoester (DeltaG; KE-2) diet. RESULTS: The KE-1 diet in mice elevated ß-hydroxybutyrate levels during nocturnal feeding, whereas the KE-2 diet in rats induced ketonemia throughout a 24-hour period. The KE-1 diet preventive strategy attenuated development of left ventricular dysfunction and remodeling post-transverse aortic constriction/MI (left ventricular ejection fraction±SD, 36±8 in vehicle versus 45±11 in KE-1; P=0.016). The KE-2 diet therapeutic approach also attenuated left ventricular dysfunction and remodeling post-MI (left ventricular ejection fraction, 41±11 in MI-vehicle versus 61±7 in MI-KE-2; P<0.001). In addition, ventricular weight, cardiomyocyte cross-sectional area, and the expression of ANP (atrial natriuretic peptide) were significantly attenuated in the KE-2-treated MI group. However, treatment with KE-2 did not influence cardiac fibrosis post-MI. The myocardial expression of the ketone transporter and 2 ketolytic enzymes was significantly increased in rats fed KE-2 diet along with normalization of myocardial ATP levels to sham values. CONCLUSIONS: Chronic oral supplementation with KE was effective in both prevention and treatment of heart failure in 2 preclinical animal models. In addition, our results indicate that treatment with KE reprogrammed the expression of genes involved in ketone body utilization and normalized myocardial ATP production following MI, consistent with provision of an auxiliary fuel. These findings provide rationale for the assessment of KEs as a treatment for patients with heart failure.


Asunto(s)
Suplementos Dietéticos , Insuficiencia Cardíaca/fisiopatología , Hidroxibutiratos , Infarto del Miocardio/fisiopatología , Miocardio/metabolismo , Volumen Sistólico/fisiología , Disfunción Ventricular Izquierda/fisiopatología , Adenosina Trifosfato/metabolismo , Animales , Aorta/cirugía , Factor Natriurético Atrial/metabolismo , Constricción Patológica , Fibrosis , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Ratones , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocardio/patología , Miocitos Cardíacos/patología , Tamaño de los Órganos , Ratas , Disfunción Ventricular Izquierda/metabolismo , Disfunción Ventricular Izquierda/patología , Función Ventricular Izquierda
10.
Sci Rep ; 8(1): 13058, 2018 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-30139995

RESUMEN

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

11.
Sci Rep ; 7(1): 12823, 2017 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-28993665

RESUMEN

Defects in the cilia gene RPGRIP1 cause Leber congenital amaurosis and cone-rod dystrophy in humans. A form of canine cone-rod dystrophy (cord1) was originally associated with a homozygous insertion in RPGRIP1 (RPGRIP1 ins/ins) as the primary disease locus while a homozygous deletion in MAP9 (MAP9 del/del) was later identified as a modifier associated with the early onset form. However, we find further variability in cone electroretinograms (ERGs) ranging from normal to absent in an extended RPGRIP1 ins/ins canine colony, irrespective of the MAP9 genotype. Ophthalmoscopically, cone ERGabsent RPGRIP1 ins/ins eyes show discolouration of the tapetal fundus with varying onset and disease progression, while sd-OCT reveals atrophic changes. Despite marked changes in cone ERG and retinal morphology, photopic vision-guided behaviour is comparable between normal and cone ERGabsent RPGRIP1 ins/ins littermates. Cone morphology of the dogs lacking cone ERG are truncated with shortened outer and inner segments. Immunohistochemically, cone ERGabsent RPGRIP1 ins/ins retinas have extensive L/M-opsin mislocalization, lack CNGB3 labelling in the L/M-cones, and lack GC1 in all cones. Our results indicate that cord1 is a multigenic disease in which mutations in neither RPGRIP1 nor MAP9 alone lead to visual deficits, and additional gene(s) contribute to cone-specific functional and morphologic defects.


Asunto(s)
Distrofias de Conos y Bastones/genética , Distrofias de Conos y Bastones/fisiopatología , Proteínas del Ojo/metabolismo , Herencia Multifactorial/genética , Retina/patología , Retina/fisiopatología , Animales , Conducta Animal , Dendritas/metabolismo , Modelos Animales de Enfermedad , Perros , Electrorretinografía , Proteínas del Ojo/genética , Femenino , Regulación de la Expresión Génica , Masculino , Linaje , Transporte de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Segmento Externo de las Células Fotorreceptoras Retinianas/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Opsinas de Bastones/metabolismo
12.
Invest Ophthalmol Vis Sci ; 53(9): 5486-501, 2012 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-22807295

RESUMEN

PURPOSE: Canine cone-rod dystrophy 1 (cord1) has been previously mapped to CFA15, and a homozygous 44-bp insertion in exon 2 (Ins44) of canine RPGRIP1 (cRPGRIP1(Ins/Ins)) has been associated with the disease. However, from the recent identification of a significant discordance in genotype-phenotype association, we have reexamined the role of cRPGRIP1 in cord1. METHODS: Retinal structure and function was assessed by clinical retinal examination, noninvasive imaging, electroretinography, and histopathology/immunohistochemistry. cRPGRIP1 splicing was analyzed by RT-PCR. Retinal gene expression was determined by quantitative RT-PCR (qRT-PCR). Five markers spanning the entire cRPGRIP1 were identified and used for haplotyping. RESULTS: Electroretinography demonstrated that cone responses were absent or present in cRPGRIP1(Ins/Ins) individuals. Moreover, performance in vision testing and optical coherence tomography (OCT) were comparable in cRPGRIP1(Ins/Ins) dogs, regardless of the cone ERG status. While histologic changes in retinal structure were minimal, immunohistochemistry demonstrated a lack of cone opsin labeling in cRPGRIP1(Ins/Ins) dogs. cDNA analysis revealed that Ins44 disrupts a putative exonic splicing enhancer that allows for skipping of exon 2, while retaining the functional RPGR-interacting domain (RID) of the protein. New cRPGRIP1 sequence changes were identified, including a 3-bp deletion affecting the 3' acceptor splice site of alternative exon 19c. The extended haplotype spanning cRPGRIP1 was identical in cRPGRIP1(Ins/Ins) dogs with and without retinal degeneration. Gene expression analysis showed that expression levels were not associated with Ins44 genotype. CONCLUSIONS: The results indicated that cRPGRIP1 Ins44 is an unlikely primary cause of cord1, and that the causal gene and mutation are likely located elsewhere in the critical disease interval.


Asunto(s)
Proteínas del Ojo/genética , Mutación/genética , Retina/patología , Retinitis Pigmentosa/genética , Empalme Alternativo , Animales , Modelos Animales de Enfermedad , Perros , Electrorretinografía , Exones/genética , Proteínas del Ojo/fisiología , Femenino , Angiografía con Fluoresceína , Estudios de Asociación Genética , Haplotipos/genética , Heterocigoto , Homocigoto , Masculino , Linaje , Retinitis Pigmentosa/patología , Tomografía de Coherencia Óptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA