Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Opt Lett ; 49(11): 3058-3061, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824327

RESUMEN

Lensless imagers based on diffusers or encoding masks enable high-dimensional imaging from a single-shot measurement and have been applied in various applications. However, to further extract image information such as edge detection, conventional post-processing filtering operations are needed after the reconstruction of the original object images in the diffuser imaging systems. Here, we present the concept of a temporal compressive edge detection method based on a lensless diffuser camera, which can directly recover a time sequence of edge images of a moving object from a single-shot measurement, without further post-processing steps. Our approach provides higher image quality during edge detection, compared with the "conventional post-processing method." We demonstrate the effectiveness of this approach by both numerical simulation and experiments. The proof-of-concept approach can be further developed with other image post-processing operations or versatile computer vision assignments toward task-oriented intelligent lensless imaging systems.

2.
Development ; 147(3)2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31964776

RESUMEN

Directional cell intercalations of epithelial cells during gastrulation has, in several organisms, been shown to be associated with a planar cell polarity in the organisation of the actin-myosin cytoskeleton and is postulated to reflect directional tension that drives oriented cell intercalations. We have characterised and applied a recently introduced non-destructive optical manipulation technique to measure the tension in individual epithelial cell junctions of cells in various locations and orientations in the epiblast of chick embryos in the early stages of primitive streak formation. Junctional tension of mesendoderm precursors in the epiblast is higher in junctions oriented in the direction of intercalation than in junctions oriented perpendicular to the direction of intercalation and higher than in junctions of other cells in the epiblast. The kinetic data fit best with a simple viscoelastic Maxwell model, and we find that junctional tension, and to a lesser extent viscoelastic relaxation time, are dependent on myosin activity.


Asunto(s)
Células Epiteliales/metabolismo , Gastrulación/fisiología , Uniones Intercelulares/metabolismo , Pinzas Ópticas , Línea Primitiva/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente , Movimiento Celular/fisiología , Polaridad Celular/fisiología , Embrión de Pollo , Gástrula/metabolismo , Estratos Germinativos/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hidrocarburos Clorados/farmacología , Microscopía Fluorescente/métodos , Miosina Tipo I/antagonistas & inhibidores , Miosina Tipo I/metabolismo , Miosina Tipo II/antagonistas & inhibidores , Miosina Tipo II/metabolismo , Pirroles/farmacología , Transducción de Señal/fisiología
3.
Proc Natl Acad Sci U S A ; 117(41): 25553-25559, 2020 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-32999070

RESUMEN

Neutrophils and dendritic cells when migrating in confined environments have been shown to actuate a directional choice toward paths of least hydraulic resistance (barotaxis), in some cases overriding chemotactic responses. Here, we investigate whether this barotactic response is conserved in the more primitive model organism Dictyostelium discoideum using a microfluidic chip design. This design allowed us to monitor the behavior of single cells via live imaging when confronted with bifurcating microchannels, presenting different combinations of hydraulic and chemical stimuli. Under the conditions employed we find no evidence in support of a barotactic response; the cells base their directional choices on the chemotactic cues. When the cells are confronted by a microchannel bifurcation, they often split their leading edge and start moving into both channels, before a decision is made to move into one and retract from the other channel. Analysis of this decision-making process has shown that cells in steeper nonhydrolyzable adenosine- 3', 5'- cyclic monophosphorothioate, Sp- isomer (cAMPS) gradients move faster and split more readily. Furthermore, there exists a highly significant strong correlation between the velocity of the pseudopod moving up the cAMPS gradient to the total velocity of the pseudopods moving up and down the gradient over a large range of velocities. This suggests a role for a critical cortical tension gradient in the directional decision-making process.


Asunto(s)
Movimiento Celular/fisiología , Toma de Decisiones/fisiología , Dictyostelium/fisiología , Modelos Biológicos , Taxia/fisiología , Quimiotaxis/fisiología , Diseño de Equipo , Técnicas Analíticas Microfluídicas , Presión , Análisis de la Célula Individual
4.
Nature ; 506(7489): 437-8, 2014 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-24572418

RESUMEN

Might it be possible to create mirrors for space telescopes, using nothing but microscopic particles held in place by light? A study that exploits a technique called optical binding provides a step towards this goal.

5.
Lab Invest ; 98(3): 380-390, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29251735

RESUMEN

Photonics, especially optical coherence elastography (OCE) and second harmonic generation (SHG) imaging are novel high-resolution imaging modalities for characterization of biological tissues. Following our preliminary experience, we hypothesized that OCE and SHG imaging would delineate the microstructure of prostate tissue and aid in distinguishing cancer from the normal benign prostatic tissue. Furthermore, these approaches may assist in characterization of the grade of cancer, as well. In this study, we confirmed a high diagnostic accuracy of OCE and SHG imaging in the detection and characterization of prostate cancer for a large set of biopsy tissues obtained from men suspected to have prostate cancer using transrectal ultrasound (TRUS). The two techniques and methods described here are complementary, one depicts the stiffness of tissues and the other illustrates the orientation of collagen structure around the cancerous lesions. The results showed that stiffness of cancer tissue was ~57.63% higher than that of benign tissue (Young's modulus of 698.43±125.29 kPa for cancerous tissue vs 443.07±88.95 kPa for benign tissue with OCE. Using histology as a reference standard and 600 kPa as a cut-off threshold, the data analysis showed sensitivity and specificity of 89.6 and 99.8%, respectively. Corresponding positive and negative predictive values were 99.5 and 94.6%, respectively. There was a significant difference noticed in terms of Young's modulus for different Gleason scores estimated by OCE (P-value<0.05). For SHG, distinct patterns of collagen distribution were seen for different Gleason grade disease with computed quantification employing a ratio of anisotropic to isotropic (A:I ratio) and this correlated with disease aggressiveness.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Imagen Óptica , Próstata/diagnóstico por imagen , Neoplasias de la Próstata/diagnóstico por imagen , Microscopía de Generación del Segundo Armónico , Anciano , Anciano de 80 o más Años , Colágeno/análisis , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Próstata/patología , Prostatectomía , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía
6.
Phys Chem Chem Phys ; 19(21): 13941-13950, 2017 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-28513676

RESUMEN

The solid to liquid phase transition of n-alkanes with more than ten carbon atoms is an interesting phenomenon relevant to many fields, from cosmetics to automotive. Here we report Raman spectroscopy of tetradecane, pentadecane and hexadecane as a function of temperature. In order to gain information on the structural changes that the hydrocarbons undergo during melting, and to determine the temperature and the speed at which the phase change occurs, their temperature-dependent Raman spectra are acquired. The spectra are analysed not only with respect to frequency shifts, band widths, and intensity ratio of certain bands, but also using a principal component analysis. The spectroscopic data suggest that the solid to liquid phase transition in hexadecane, differently from tetradecane and pentadecane, is almost instantaneous. Tetradecane shows a slightly faster transition than pentadecane. In addition, a rotator phase as an intermediate state between the liquid and crystalline solid phases is identified in pentadecane. Different characteristic features in the solid spectra of the hydrocarbons relate tetradecane and hexadecane to a tryclinic crystalline structure, and pentadecane to an orthorhombic structure.

7.
J Phys Chem A ; 119(51): 12797-804, 2015 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-26633739

RESUMEN

Using blends of bioethanol and gasoline as automotive fuel leads to a net decrease in the production of harmful emission compared to the use of pure fossil fuel. However, fuel droplet evaporation dynamics change depending on the mixing ratio. Here we use single particle manipulation techniques to study the evaporation dynamics of ethanol/gasoline blend microdroplets. The use of an electrodynamic balance enables measurements of the evaporation of individual droplets in a controlled environment, while optical tweezers facilitate studies of the behavior of droplets inside a spray. Hence, the combination of both methods is perfectly suited to obtain a complete picture of the evaporation process. The influence of adding varied amounts of ethanol to gasoline is investigated, and we observe that droplets with a greater fraction of ethanol take longer to evaporate. Furthermore, we find that our methods are sensitive enough to observe the presence of trace amounts of water in the droplets. A theoretical model, predicting the evaporation of ethanol and gasoline droplets in dry nitrogen gas, is used to explain the experimental results. Also a theoretical estimation of the saturation of the environment, with other aerosols, in the tweezers is carried out.

8.
J Biol Chem ; 288(21): 14698-708, 2013 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-23585567

RESUMEN

Integrins in effector T cells are highly expressed and important for trafficking of these cells and for their effector functions. However, how integrins are regulated in effector T cells remains poorly characterized. Here, we have investigated effector T cell leukocyte function-associated antigen-1 (LFA-1) regulation in primary murine effector T cells. These cells have high LFA-1 integrin expression and display high spontaneous binding to intercellular adhesion molecule-1 (ICAM-1) ligand under static conditions. In addition, these cells are able to migrate spontaneously on ICAM-1. Atomic force microscopy measurements showed that the force required for unbinding of integrin-ligand interactions increases over time (0.5-20-s contact time). The maximum unbinding force for this interaction was ∼140 piconewtons at 0.5-s contact time, increasing to 580 piconewtons at 20-s contact time. Also, the total work required to disrupt the interaction increased over the 20-s contact time, indicating LFA-1-mediated adhesion strengthening in primary effector T cells over a very quick time frame. Effector T cells adhered spontaneously to ICAM-1 under conditions of shear flow, in the absence of chemokine stimulation, and this binding was independent of protein kinase B/Akt and protein kinase C kinase activity, but dependent on calcium/calmodulin signaling and an intact actin cytoskeleton. These results indicate that effector T cell integrins are highly expressed and spontaneously adhesive in the absence of inside-out integrin signaling but that LFA-1-mediated firm adhesion under conditions of shear flow requires downstream integrin signaling, which is dependent on calcium/calmodulin and the actin cytoskeleton.


Asunto(s)
Actinas/metabolismo , Señalización del Calcio/fisiología , Calmodulina/metabolismo , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Linfocitos T/metabolismo , Actinas/genética , Actinas/inmunología , Animales , Calmodulina/genética , Calmodulina/inmunología , Adhesión Celular/fisiología , Células Cultivadas , Citoesqueleto/genética , Citoesqueleto/inmunología , Citoesqueleto/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/inmunología , Molécula 1 de Adhesión Intercelular/metabolismo , Antígeno-1 Asociado a Función de Linfocito/genética , Antígeno-1 Asociado a Función de Linfocito/inmunología , Ratones , Ratones Noqueados , Microscopía de Fuerza Atómica , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/inmunología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Resistencia al Corte , Linfocitos T/inmunología , Linfocitos T/ultraestructura
9.
Nano Lett ; 13(3): 1185-91, 2013 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-23394286

RESUMEN

Axially resolved microphotoluminescence mapping of semiconductor nanowires held in an optical tweezers reveals important new experimental information regarding equilibrium trapping points and trapping stability of high aspect ratio nanostructures. In this study, holographic optical tweezers are used to scan trapped InP nanowires along the beam direction with respect to a fixed excitation source and the luminescent properties are recorded. It is observed that nanowires with lengths on the range of 3-15 µm are stably trapped near the tip of the wire with the long segment positioned below the focus in an inverted trapping configuration. Through the use of trap multiplexing we investigate the possibility of improving the axial stability of the trapped nanowires. Our results have important implication for applications of optically assisted nanowire assembly and optical tweezers based scanning probes microscopy.

10.
Nature ; 492(7427): 51-2, 2012 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-23222604
11.
Phys Chem Chem Phys ; 14(45): 15826-31, 2012 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-23089984

RESUMEN

In this paper we explore the trapping of aerosol droplets using an annular beam, formed by blocking the central portion of a Gaussian beam, and quantify the improvements over conventional Gaussian beam traps. Recent work on the modelling of single aerosol dynamics within an optical tweezer trap [Burnham et al., Journal of the Optical Society of America B, 2011, 28, 2856-2864] has indicated that the use of annular beams can allow smaller droplets to be trapped, which we experimentally verify. We also demonstrate that annular beams allow droplets to be trapped at higher powers, and with reduced axial displacement with increasing power, than Gaussian beams. We confirm these results, due to a reduction in the axial scattering forces, using this theoretical model. Finally back focal plane interferometry is used to determine the axial and lateral trap stiffnesses for a series of droplets, showing a significant increase in the axial : lateral trap stiffness ratio from 0.79 ± 0.04 to 1.15 ± 0.04 when an annular beam is used.


Asunto(s)
Aerosoles/química , Tamaño de la Partícula
12.
Opt Express ; 19(17): 16432-7, 2011 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-21935007

RESUMEN

Rotating mirror systems based on the Miller Principle are a mainstay modality for ultra-high speed imaging within the range 1-25 million frames per second. Importantly, the true temporal accuracy of observations recorded in such cameras is sensitive to the framing rate that the system directly associates with each individual data acquisition. The purpose for the present investigation was to examine the validity of such system-reported frame rates in a widely used commercial system (a Cordin 550-62 model) by independently measuring the framing rate at the instant of triggering. Here, we found a small but significant difference between such measurements: the average discrepancy (over the entire spectrum of frame rates used) was found to be 0.66 ± 0.48%, with a maximum difference of 2.33%. The principal reason for this discrepancy was traced to non-optimized sampling of the mirror rotation rate within the system protocol. This paper thus serves three purposes: (i) we highlight a straightforward diagnostic approach to facilitate scrutiny of rotating-mirror system integrity; (ii) we raise awareness of the intrinsic errors associated with data previously acquired with this particular system and model; and (iii), we recommend that future control routines address the sampling issue by implementing real-time measurement at the instant of triggering.

13.
Commun Integr Biol ; 14(1): 5-14, 2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33552382

RESUMEN

Migratory environments of various eukaryotic cells, such as amoeba, leukocytes and cancer cells, typically involve spatial confinement. Numerous studies have recently emerged, aimed to develop experimental platforms that better recapitulate the characteristics of the cellular microenvironment. Using microfluidic technologies, we show that increasing confinement of Dictyostelium discoideum cells into narrower micro-channels resulted in a significant change in the mode of migration and associated arrangement of the actomyosin cytoskeleton. We observed that cells tended to migrate at constant speed, the magnitude of which was dependent on the size of the channels, as was the locomotory strategy adopted by each cell. Two different migration modes were observed, pseudopod-based and bleb-based migration, with bleb based migration being more frequent with increasing confinement and leading to slower migration. Beside the migration mode, we found that the major determinants of cell speed are its protrusion rate, the amount of F-actin at its leading edge and the number of actin foci. Our results highlighted the impact of the microenvironments on cell behavior. Furthermore, we developed a novel quantitative movement analysis platform for mono-dimensional cell migration that allows for standardization and simplification of the experimental conditions and aids investigation of the complex and dynamic processes occurring at the single-cell level.

14.
Front Immunol ; 12: 792813, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35154074

RESUMEN

Integrins in effector T cells are crucial for cell adhesion and play a central role in cell-mediated immunity. Leukocyte adhesion deficiency (LAD) type III, a genetic condition that can cause death in early childhood, highlights the importance of integrin/kindlin interactions for immune system function. A TTT/AAA mutation in the cytoplasmic domain of the ß2 integrin significantly reduces kindlin-3 binding to the ß2 tail, abolishes leukocyte adhesion to intercellular adhesion molecule 1 (ICAM-1), and decreases T cell trafficking in vivo. However, how kindlin-3 affects integrin function in T cells remains incompletely understood. We present an examination of LFA-1/ICAM-1 bonds in both wild-type effector T cells and those with a kindlin-3 binding site mutation. Adhesion assays show that effector T cells carrying the kindlin-3 binding site mutation display significantly reduced adhesion to the integrin ligand ICAM-1. Using optical trapping, combined with back focal plane interferometry, we measured a bond rupture force of 17.85 ±0.63 pN at a force loading rate of 30.21 ± 4.35 pN/s, for single integrins expressed on wild-type cells. Interestingly, a significant drop in rupture force of bonds was found for TTT/AAA-mutant cells, with a measured rupture force of 10.08 ± 0.88pN at the same pulling rate. Therefore, kindlin-3 binding to the cytoplasmic tail of the ß2-tail directly affects catch bond formation and bond strength of integrin-ligand bonds. As a consequence of this reduced binding, CD8+ T cell activation in vitro is also significantly reduced.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Adhesión Celular/inmunología , Proteínas del Citoesqueleto/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Animales , Sitios de Unión , Antígenos CD18/inmunología , Antígenos CD18/metabolismo , Proteínas del Citoesqueleto/inmunología , Proteínas del Citoesqueleto/metabolismo , Molécula 1 de Adhesión Intercelular/inmunología , Activación de Linfocitos/inmunología , Antígeno-1 Asociado a Función de Linfocito/inmunología , Ratones , Mutación , Pinzas Ópticas
15.
ACS Nano ; 14(1): 394-405, 2020 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-31841303

RESUMEN

In stimulated emission depletion (STED) nanoscopy, the major origin of decreased signal-to-noise ratio within images can be attributed to sample photobleaching and strong optical aberrations. This is due to STED utilizing a high-power depletion laser (increasing the risk of photodamage), while the depletion beam is very sensitive to sample-induced aberrations. Here, we demonstrate a custom-built STED microscope with automated aberration correction that is capable of 3D super-resolution imaging through thick, highly aberrating tissue. We introduce and investigate a state of the art image denoising method by block-matching and collaborative 3D filtering (BM3D) to numerically enhance fine object details otherwise mixed with noise and further enhance the image quality. Numerical denoising provides an increase in the final effective resolution of the STED imaging of 31% using the well established Fourier ring correlation metric. Results achieved through the combination of aberration correction and tailored image processing are experimentally validated through super-resolved 3D imaging of axons in differentiated induced pluripotent stem cells growing under an 80 µm thick layer of tissue with lateral and axial resolution of 204 and 310 nm, respectively.


Asunto(s)
Imagenología Tridimensional , Imagen Óptica , Automatización , Línea Celular , Humanos , Imagenología Tridimensional/instrumentación , Microscopía Fluorescente/instrumentación , Imagen Óptica/instrumentación , Tamaño de la Partícula , Propiedades de Superficie
16.
Lab Chip ; 9(4): 521-8, 2009 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-19190787

RESUMEN

Arrays of optically tweezed aerosol droplets, each of sub-picolitre volume, are manipulated by holographic optical tweezers and characterised by cavity enhanced Raman spectroscopy. A spatial light modulator is employed to generate arrays of optical traps from a single laser beam and to control the array dimensions and relative trap positions. Comparative hygroscopicity measurements are performed concurrently on five trapped droplets by monitoring the evolving size of each droplet. This is extended to the controlled coalescence of an array of droplets accompanied by spectroscopic measurements. These data represent the first ever simultaneous measurements of the evolving composition and size of an array of aerosol droplets. We consider the possibility of using aerosol arrays as a platform for studying chemical reactions in sub-picolitre volumes, exploiting the versatility of aerosol arrays for performing optical digital microfluidic operations accompanied by micro-total analysis.


Asunto(s)
Aerosoles/química , Microfluídica/métodos , Espectrometría Raman/métodos , Holografía/métodos , Pinzas Ópticas , Humectabilidad
17.
Opt Express ; 17(25): 23316-22, 2009 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-20052258

RESUMEN

It is well known that a circularly polarized Gaussian beam carries spin angular momentum, but not orbital angular momentum. This paper demonstrates that focusing a beam carrying spin angular momentum can induce an orbital angular momentum which we used to drive the orbital motion of a micron-sized metal particle that is trapped off the beam axis. The direction of the orbital motion is controlled by the handedness of the circular polarization. The orbiting dynamics of the trapped particle, which acted as an optical micro-detector, were quantitatively measured and found to be in excellent agreement with the theoretical predictions.


Asunto(s)
Metales/química , Pinzas Ópticas , Refractometría/métodos , Transferencia de Energía , Luz , Distribución Normal , Dispersión de Radiación
18.
Phys Chem Chem Phys ; 11(47): 11333-9, 2009 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-20024402

RESUMEN

Micron and sub-micron sized aerosol particles are captured, manipulated and characterised in a Bessel beam optical trap. Bright field microscopy and elastic light scattering measurements are used in combination to interrogate trapped particles and explore the optical landscape of the trap. We conclude that the Bessel trap has a number of advantages over optical tweezers in terms of characterisation of accumulation mode particles, manipulation of particles over macroscopic length scales and effective control of the gas phase. As such, the Bessel trap is a valuable addition to the aerosol optical toolkit.


Asunto(s)
Aerosoles/química , Láseres de Gas , Pinzas Ópticas , Tamaño de la Partícula
19.
Biomed Opt Express ; 10(4): 1999-2009, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-31086714

RESUMEN

Stimulated emission depletion (STED) nanoscopy is one of a suite of modern optical microscopy techniques capable of bypassing the conventional diffraction limit in fluorescent imaging. STED makes use of a spiral phase mask to enable 2D super-resolution imaging whereas to achieve full volumetric 3D super-resolution an additional bottle-beam phase mask must be applied. The resolution achieved in biological samples 10 µm or thicker is limited by aberrations induced mainly by scattering due to refractive index heterogeneity in the sample. These aberrations impact the fidelity of both types of phase mask, and have limited the application of STED to thicker biological systems. Here we apply an automated adaptive optics solution to correct the performance of both STED masks, enhancing robustness and expanding the capabilities of this nanoscopic technique. Corroboration in terms of successful high-quality imaging of the full volume of a 15µm mitotic spindle with resolution of 50nm x 50nm x 150nm achieved in all three dimensions is presented.

20.
Sci Rep ; 9(1): 5742, 2019 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-30952895

RESUMEN

Worldwide, prostate cancer sits only behind lung cancer as the most commonly diagnosed form of the disease in men. Even the best diagnostic standards lack precision, presenting issues with false positives and unneeded surgical intervention for patients. This lack of clear cut early diagnostic tools is a significant problem. We present a microfluidic platform, the Time-Resolved Hydrodynamic Stretcher (TR-HS), which allows the investigation of the dynamic mechanical response of thousands of cells per second to a non-destructive stress. The TR-HS integrates high-speed imaging and computer vision to automatically detect and track single cells suspended in a fluid and enables cell classification based on their mechanical properties. We demonstrate the discrimination of healthy and cancerous prostate cell lines based on the whole-cell, time-resolved mechanical response to a hydrodynamic load. Additionally, we implement a finite element method (FEM) model to characterise the forces responsible for the cell deformation in our device. Finally, we report the classification of the two different cell groups based on their time-resolved roundness using a decision tree classifier. This approach introduces a modality for high-throughput assessments of cellular suspensions and may represent a viable application for the development of innovative diagnostic devices.


Asunto(s)
Técnicas Analíticas Microfluídicas , Neoplasias de la Próstata/patología , Línea Celular Tumoral , Humanos , Masculino , Microfluídica , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA