Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Neurosci ; 39(15): 2810-2822, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30737307

RESUMEN

Neurogenesis in the adult brain, a powerful mechanism for neuronal plasticity and brain repair, is altered by aging and pathological conditions, including metabolic disorders. The search for mechanisms and therapeutic solutions to alter neurogenesis requires understanding of cell kinetics within neurogenic niches using a high-throughput quantitative approach. The challenge is in the dynamic nature of the process and multiple cell types involved, each having several potential modes of division or cell fate. Here we show that cell kinetics can be revealed through a combination of the BrdU/EdU pulse-chase, based on the circadian pattern of DNA replication, and a differential equations model that describes time-dependent cell densities. The model is validated through the analysis of cell kinetics in the cerebellar neurogenic niche of normal young adult male zebrafish, with cells quantified in 2D (sections), and with neuronal fate and reactivation of stem cells confirmed in 3D whole-brain images (CLARITY). We then reveal complex alterations in cell kinetics associated with accelerated aging due to chronic high caloric intake. Low activity of neuronal stem cells in this condition persists 2 months after reverting to normal diet, and is accompanied by overproduction of transient amplifying cells, their accelerated cell death, and slow migration of postmitotic progeny. This combined experimental and mathematical approach should allow for relatively high-throughput analysis of early signs of pathological and age-related changes in neurogenesis, evaluation of specific therapeutic targets, and drug efficacy.SIGNIFICANCE STATEMENT Understanding normal cell kinetics of adult neurogenesis and the type of cells affected by a pathological process is needed to develop effective prophylactic and therapeutic measures directed at specific cell targets. Complex time-dependent mechanisms involved in the kinetics of multiple cell types require a combination of experimental and mathematical modeling approaches. This study demonstrates such a combined approach by comparing normal neurogenesis with that altered by diet-induced accelerated aging in adult zebrafish.


Asunto(s)
Envejecimiento Prematuro/patología , Dieta/efectos adversos , Ingestión de Energía , Neurogénesis/fisiología , Nicho de Células Madre/fisiología , Pez Cebra/fisiología , Animales , Encéfalo/diagnóstico por imagen , División Celular , Ritmo Circadiano , Replicación del ADN , Hiperfagia/patología , Cinética , Imagen por Resonancia Magnética , Masculino , Mitosis , Modelos Teóricos , Células-Madre Neurales
2.
Int J Mol Sci ; 18(11)2017 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-29072584

RESUMEN

Chronic high caloric intake (HCI) is a risk factor for multiple major human disorders, from diabetes to neurodegeneration. Mounting evidence suggests a significant contribution of circadian misalignment and sleep alterations to this phenomenon. An inverse temporal relationship between sleep, activity, food intake, and clock mechanisms in nocturnal and diurnal animals suggests that a search for effective therapeutic approaches can benefit from the use of diurnal animal models. Here, we show that, similar to normal aging, HCI leads to the reduction in daily amplitude of expression for core clock genes, a decline in sleep duration, an increase in scoliosis, and anxiety-like behavior. A remarkable decline in adult neurogenesis in 1-year old HCI animals, amounting to only 21% of that in age-matched Control, exceeds age-dependent decline observed in normal 3-year old zebrafish. This is associated with misalignment or reduced amplitude of daily patterns for principal cell cycle regulators, cyclins A and B, and p20, in brain tissue. Together, these data establish HCI in zebrafish as a model for metabolically induced premature aging of sleep, circadian functions, and adult neurogenesis, allowing for a high throughput approach to mechanistic studies and drug trials in a diurnal vertebrate.


Asunto(s)
Envejecimiento Prematuro/etiología , Ritmo Circadiano , Neurogénesis , Trastornos del Sueño-Vigilia/complicaciones , Trastornos del Sueño-Vigilia/fisiopatología , Sueño , Animales , Ansiedad , Peso Corporal , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Relojes Circadianos , Ingestión de Energía , Expresión Génica , Tamaño de los Órganos , Pez Cebra
3.
J Appl Physiol (1985) ; 134(2): 339-355, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36603044

RESUMEN

Aerobic training remodels the quantity and quality (function per unit) of skeletal muscle mitochondria to promote substrate oxidation, however, there remain key gaps in understanding the underlying mechanisms during initial training adaptations. We used short-term high-intensity interval training (HIIT) to determine changes to mitochondrial respiration and regulatory pathways that occur early in remodeling. Fifteen normal-weight sedentary adults started seven sessions of HIIT over 14 days and 14 participants completed the intervention. We collected vastus lateralis biopsies before and 48 h after HIIT to determine mitochondrial respiration, RNA sequencing, and Western blotting for proteins of mitochondrial respiration and degradation via autophagy. HIIT increased respiration per mitochondrial protein for lipid (+23% P = 0.020), complex I (+18%, P = 0.0015), complex I + II (+14%, P < 0.0001), and complex II (+24% P < 0.0001). Transcripts that increased with HIIT identified several gene sets of mitochondrial respiration, particularly for complex I, whereas transcripts that decreased identified pathways of DNA and chromatin remodeling. HIIT lowered protein abundance of autophagy markers for p62 (-19%, P = 0.012) and LC3 II/I (-20%, P = 0.004) in whole tissue lysates but not isolated mitochondria. Meal tolerance testing revealed HIIT increased the change in whole body respiratory exchange ratio and lowered cumulative plasma insulin concentrations. Gene transcripts and respiratory function indicate remodeling of mitochondria within 2 wk of HIIT. Overall changes are consistent with increased protein quality driving rapid improvements in substrate oxidation.NEW & NOTEWORTHY Aerobic training stimulates mitochondrial metabolism in skeletal muscle that is linked to improvements to whole body fuel metabolism. The mechanisms driving changes to the quantity and quality (function per unit) of mitochondria are less known. We used seven sessions of high-intensity interval training (HIIT) to determine functional changes and mechanisms of mitochondrial remodeling in skeletal muscle. HIIT increased mitochondrial respiration per mass for fatty acids, complex I, and complex II substrates. HIIT-induced remodeling pathways including gene transcripts for mitochondrial respiration (via RNA sequencing of muscle tissue) and proteins related to complex I respiration. We conclude that an early feature of aerobic training is increased mitochondrial protein quality via improved respiration and induction of mitochondrial transcriptional patterns.


Asunto(s)
Entrenamiento de Intervalos de Alta Intensidad , Adulto , Humanos , Músculo Esquelético/fisiología , Oxidación-Reducción , Mitocondrias Musculares/metabolismo , Respiración
4.
Physiol Rep ; 11(20): e15840, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37857571

RESUMEN

High-fat diet (HFD) and exercise remodel skeletal muscle mitochondria. The electron transfer flavoproteins (ETF) transfer reducing equivalents from ß-oxidation into the electron transfer system. Exercise may stimulate the synthesis of ETF proteins to increase lipid respiration. We determined mitochondrial remodeling for lipid respiration through ETF in the context of higher mitochondrial abundance/capacity seen in female mice. We hypothesized HFD would be a greater stimulus than exercise to remodel ETF and lipid pathways through increased protein synthesis alongside increased lipid respiration. Female C57BL/6J mice (n = 15 per group) consumed HFD or low-fat diet (LFD) for 4 weeks then remained sedentary (SED) or completed 8 weeks of treadmill training (EX). We determined mitochondrial lipid respiration, RNA abundance, individual protein synthesis, and abundance for ETFα, ETFß, and ETF dehydrogenase (ETFDH). HFD increased absolute and relative lipid respiration (p = 0.018 and p = 0.034) and RNA abundance for ETFα (p = 0.026), ETFß (p = 0.003), and ETFDH (p = 0.0003). HFD increased synthesis for ETFα and ETFDH (p = 0.0007 and p = 0.002). EX increased synthesis of ETFß and ETFDH (p = 0.008 and p = 0.006). Higher synthesis rates of ETF were not always reflected in greater protein abundance. Greater synthesis of ETF during HFD indicates mitochondrial remodeling which may contribute higher mitochondrial lipid respiration through enhanced ETF function.


Asunto(s)
Dieta Alta en Grasa , Flavoproteínas Transportadoras de Electrones , Femenino , Animales , Ratones , Flavoproteínas Transportadoras de Electrones/genética , Flavoproteínas Transportadoras de Electrones/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Lípidos , Respiración , ARN/metabolismo
5.
Physiol Rep ; 10(24): e15543, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36541261

RESUMEN

High dietary fat intake induces significant whole-body and skeletal muscle adaptations in mice, including increased capacity for fat oxidation and mitochondrial biogenesis. The impact of a diet that is high in fat and simple sugars (i.e., western diet [WD]), particularly on regulation of skeletal muscle mitochondrial function, is less understood. The purpose of the current study was to determine physiologic adaptations in mitochondrial respiratory capacity in skeletal muscle during short-term consumption of WD, including if adaptive responses to WD-feeding are modified by concurrent exercise training or may be sex-specific. Male and female C57BL/6J mice were randomized to consume low-fat diet (LFD) or WD for 4 weeks, with some WD-fed mice also performing concurrent treadmill training (WD + Ex). Group sizes were n = 4-7. Whole-body metabolism was measured using in-cage assessment of food intake and energy expenditure, DXA body composition analysis and insulin tolerance testing. High-resolution respirometry of mitochondria isolated from quadriceps muscle was used to determine skeletal muscle mitochondrial respiratory function. Male mice fed WD gained mass (p < 0.001), due to increased fat mass (p < 0.001), and displayed greater respiratory capacity for both lipid and non-lipid substrates compared with LFD mice (p < 0.05). There was no effect of concurrent treadmill training on maximal respiration (WD + Ex vs. WD). Female mice had non-significant changes in body mass and composition as a function of the interventions, and no differences in skeletal muscle mitochondrial oxidative capacity. These findings indicate 4 weeks of WD feeding can increase skeletal muscle mitochondrial oxidative capacity among male mice; whereas WD, with or without exercise, had minimal impact on mass gain and skeletal muscle respiratory capacity among female mice. The translational relevance is that mitochondrial adaptation to increases in dietary fat intake that model WD may be related to differences in weight gain among male and female mice.


Asunto(s)
Dieta Occidental , Mitocondrias Musculares , Condicionamiento Físico Animal , Animales , Femenino , Masculino , Ratones , Dieta Alta en Grasa/efectos adversos , Dieta Occidental/efectos adversos , Grasas de la Dieta/metabolismo , Ratones Endogámicos C57BL , Mitocondrias , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Respiración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA