Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38815585

RESUMEN

Epigenetic dysregulation has emerged as an important etiological mechanism of neurodevelopmental disorders (NDDs). Pathogenic variation in epigenetic regulators can impair deposition of histone post-translational modifications leading to aberrant spatiotemporal gene expression during neurodevelopment. The male-specific lethal (MSL) complex is a prominent multi-subunit epigenetic regulator of gene expression and is responsible for histone 4 lysine 16 acetylation (H4K16ac). Using exome sequencing, here we identify a cohort of 25 individuals with heterozygous de novo variants in MSL complex member MSL2. MSL2 variants were associated with NDD phenotypes including global developmental delay, intellectual disability, hypotonia, and motor issues such as coordination problems, feeding difficulties, and gait disturbance. Dysmorphisms and behavioral and/or psychiatric conditions, including autism spectrum disorder, and to a lesser extent, seizures, connective tissue disease signs, sleep disturbance, vision problems, and other organ anomalies, were observed in affected individuals. As a molecular biomarker, a sensitive and specific DNA methylation episignature has been established. Induced pluripotent stem cells (iPSCs) derived from three members of our cohort exhibited reduced MSL2 levels. Remarkably, while NDD-associated variants in two other members of the MSL complex (MOF and MSL3) result in reduced H4K16ac, global H4K16ac levels are unchanged in iPSCs with MSL2 variants. Regardless, MSL2 variants altered the expression of MSL2 targets in iPSCs and upon their differentiation to early germ layers. Our study defines an MSL2-related disorder as an NDD with distinguishable clinical features, a specific blood DNA episignature, and a distinct, MSL2-specific molecular etiology compared to other MSL complex-related disorders.

2.
Genet Med ; 25(7): 100836, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37013901

RESUMEN

PURPOSE: Rothmund-Thomson syndrome (RTS) is characterized by poikiloderma, sparse hair, small stature, skeletal defects, cancer, and cataracts, resembling features of premature aging. RECQL4 and ANAPC1 are the 2 known disease genes associated with RTS in >70% of cases. We describe RTS-like features in 5 individuals with biallelic variants in CRIPT (OMIM 615789). METHODS: Two newly identified and 4 published individuals with CRIPT variants were systematically compared with those with RTS using clinical data, computational analysis of photographs, histologic analysis of skin, and cellular studies on fibroblasts. RESULTS: All CRIPT individuals fulfilled the diagnostic criteria for RTS and additionally had neurodevelopmental delay and seizures. Using computational gestalt analysis, CRIPT individuals showed greatest facial similarity with individuals with RTS. Skin biopsies revealed a high expression of senescence markers (p53/p16/p21) and the senescence-associated ß-galactosidase activity was elevated in CRIPT-deficient fibroblasts. RECQL4- and CRIPT-deficient fibroblasts showed an unremarkable mitotic progression and unremarkable number of mitotic errors and no or only mild sensitivity to genotoxic stress by ionizing radiation, mitomycin C, hydroxyurea, etoposide, and potassium bromate. CONCLUSION: CRIPT causes an RTS-like syndrome associated with neurodevelopmental delay and epilepsy. At the cellular level, RECQL4- and CRIPT-deficient cells display increased senescence, suggesting shared molecular mechanisms leading to the clinical phenotypes.


Asunto(s)
Síndrome Rothmund-Thomson , Humanos , Síndrome Rothmund-Thomson/genética , Síndrome Rothmund-Thomson/diagnóstico , Síndrome Rothmund-Thomson/patología , Senescencia Celular/genética , Daño del ADN , Hidroxiurea/metabolismo , Fibroblastos , Mutación , Proteínas Adaptadoras Transductoras de Señales/metabolismo
3.
J Med Genet ; 59(6): 613-622, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-34135092

RESUMEN

BACKGROUND: Silver-Russell syndrome (SRS) is an imprinting disorder characterised by prenatal and postnatal growth restriction, but its clinical features are non-specific and its differential diagnosis is broad. Known molecular causes of SRS include imprinting disturbance, single nucleotide variant (SNV), CNV or UPD affecting several genes; however, up to 40% of individuals with a clinical diagnosis of SRS currently receive no positive molecular diagnosis. METHODS: To determine whether whole-genome sequencing (WGS) could uncover pathogenic variants missed by current molecular testing, we analysed data of 72 participants recruited to the 100,000 Genomes Project within the clinical category of SRS. RESULTS: In 20 participants (27% of the cohort) we identified genetic variants plausibly accounting for SRS. Coding SNVs were identified in genes including CDKN1C, IGF2, IGF1R and ORC1. Maternal-effect variants were found in mothers of five participants, including two participants with imprinting disturbance and one with multilocus imprinting disorder. Two regions of homozygosity were suggestive of UPD involving imprinted regions implicated in SRS and Temple syndrome, and three plausibly pathogenic CNVs were found, including a paternal deletion of PLAGL1. In 48 participants with no plausible pathogenic variant, unbiased analysis of SNVs detected a potential association with STX4. CONCLUSION: WGS analysis can detect UPD, CNV and SNV and is potentially a valuable addition to diagnosis of SRS and related growth-restricting disorders.


Asunto(s)
Anomalías Múltiples , Síndrome de Silver-Russell , Anomalías Múltiples/genética , Metilación de ADN , Femenino , Impresión Genómica/genética , Humanos , Herencia Materna , Embarazo , Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/genética , Disomía Uniparental
4.
Am J Hum Genet ; 104(4): 596-610, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30879640

RESUMEN

Mutations in several genes encoding components of the SWI/SNF chromatin remodeling complex cause neurodevelopmental disorders (NDDs). Here, we report on five individuals with mutations in SMARCD1; the individuals present with developmental delay, intellectual disability, hypotonia, feeding difficulties, and small hands and feet. Trio exome sequencing proved the mutations to be de novo in four of the five individuals. Mutations in other SWI/SNF components cause Coffin-Siris syndrome, Nicolaides-Baraitser syndrome, or other syndromic and non-syndromic NDDs. Although the individuals presented here have dysmorphisms and some clinical overlap with these syndromes, they lack their typical facial dysmorphisms. To gain insight into the function of SMARCD1 in neurons, we investigated the Drosophila ortholog Bap60 in postmitotic memory-forming neurons of the adult Drosophila mushroom body (MB). Targeted knockdown of Bap60 in the MB of adult flies causes defects in long-term memory. Mushroom-body-specific transcriptome analysis revealed that Bap60 is required for context-dependent expression of genes involved in neuron function and development in juvenile flies when synaptic connections are actively being formed in response to experience. Taken together, we identify an NDD caused by SMARCD1 mutations and establish a role for the SMARCD1 ortholog Bap60 in the regulation of neurodevelopmental genes during a critical time window of juvenile adult brain development when neuronal circuits that are required for learning and memory are formed.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Memoria , Trastornos del Neurodesarrollo/genética , Neuronas/metabolismo , Animales , Niño , Preescolar , Discapacidades del Desarrollo/genética , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Drosophila melanogaster , Femenino , Regulación de la Expresión Génica , Humanos , Discapacidad Intelectual/genética , Aprendizaje , Masculino , Mitosis , Hipotonía Muscular/genética , Cuerpos Pedunculados , Mutación , Síndrome , Factores de Transcripción/genética
5.
Am J Hum Genet ; 105(5): 933-946, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31607427

RESUMEN

Trio-based whole-exome sequence (WES) data have established confident genetic diagnoses in ∼40% of previously undiagnosed individuals recruited to the Deciphering Developmental Disorders (DDD) study. Here we aim to use the breadth of phenotypic information recorded in DDD to augment diagnosis and disease variant discovery in probands. Median Euclidean distances (mEuD) were employed as a simple measure of similarity of quantitative phenotypic data within sets of ≥10 individuals with plausibly causative de novo mutations (DNM) in 28 different developmental disorder genes. 13/28 (46.4%) showed significant similarity for growth or developmental milestone metrics, 10/28 (35.7%) showed similarity in HPO term usage, and 12/28 (43%) showed no phenotypic similarity. Pairwise comparisons of individuals with high-impact inherited variants to the 32 individuals with causative DNM in ANKRD11 using only growth z-scores highlighted 5 likely causative inherited variants and two unrecognized DNM resulting in an 18% diagnostic uplift for this gene. Using an independent approach, naive Bayes classification of growth and developmental data produced reasonably discriminative models for the 24 DNM genes with sufficiently complete data. An unsupervised naive Bayes classification of 6,993 probands with WES data and sufficient phenotypic information defined 23 in silico syndromes (ISSs) and was used to test a "phenotype first" approach to the discovery of causative genotypes using WES variants strictly filtered on allele frequency, mutation consequence, and evidence of constraint in humans. This highlighted heterozygous de novo nonsynonymous variants in SPTBN2 as causative in three DDD probands.


Asunto(s)
Discapacidades del Desarrollo/genética , Teorema de Bayes , Niño , Enanismo/genética , Exoma/genética , Femenino , Frecuencia de los Genes/genética , Predisposición Genética a la Enfermedad/genética , Heterocigoto , Humanos , Masculino , Mutación/genética , Fenotipo , Proteínas Represoras/genética , Espectrina/genética , Secuenciación del Exoma
6.
Am J Med Genet A ; 188(3): 959-964, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34904380

RESUMEN

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant multisystemic vascular dysplasia, characterized by arteriovenous malformations (AVMs), mucocutaneous telangiectasia and nosebleeds. HHT is caused by a heterozygous null allele in ACVRL1, ENG, or SMAD4, which encode proteins mediating bone morphogenetic protein (BMP) signaling. Several missense and stop-gain variants identified in GDF2 (encoding BMP9) have been reported to cause a vascular anomaly syndrome similar to HHT, however none of these patients met diagnostic criteria for HHT. HHT families from UK NHS Genomic Medicine Centres were recruited to the Genomics England 100,000 Genomes Project. Whole genome sequencing and tiering protocols identified a novel, heterozygous GDF2 sequence variant in all three affected members of one HHT family who had previously screened negative for ACVRL1, ENG, and SMAD4. All three had nosebleeds and typical HHT telangiectasia, and the proband also had severe pulmonary AVMs from childhood. In vitro studies showed the mutant construct expressed the proprotein but lacked active mature BMP9 dimer, suggesting the mutation disrupts correct cleavage of the protein. Plasma BMP9 levels in the patients were significantly lower than controls. In conclusion, we propose that this heterozygous GDF2 variant is a rare cause of HHT associated with pulmonary AVMs.


Asunto(s)
Malformaciones Arteriovenosas , Telangiectasia Hemorrágica Hereditaria , Receptores de Activinas Tipo II/genética , Fístula Arteriovenosa , Malformaciones Arteriovenosas/diagnóstico , Malformaciones Arteriovenosas/genética , Niño , Endoglina/genética , Endoglina/metabolismo , Epistaxis , Factor 2 de Diferenciación de Crecimiento/genética , Humanos , Mutación , Arteria Pulmonar/anomalías , Venas Pulmonares/anomalías , Telangiectasia Hemorrágica Hereditaria/diagnóstico , Telangiectasia Hemorrágica Hereditaria/genética , Telangiectasia Hemorrágica Hereditaria/patología
7.
Am J Med Genet A ; 188(6): 1667-1675, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35146895

RESUMEN

TRPM3 encodes a transient receptor potential cation channel of the melastatin family, expressed in the central nervous system and in peripheral sensory neurons of the dorsal root ganglia. The recurrent substitution in TRPM3: c.2509G>A, p.(Val837Met) has been associated with syndromic intellectual disability and seizures. In this report, we present the clinical and molecular features of seven previously unreported individuals, identified by exome sequencing, with the recurrent p.(Val837Met) variant and global developmental delay. Other shared clinical features included congenital hypotonia, dysmorphic facial features (broad forehead, deep-set eyes, and down turned mouth), exotropia, and musculoskeletal issues (hip dysplasia, hip dislocation, scoliosis). Seizures were observed in two of seven individuals (febrile seizure in one and generalized tonic-clonic seizures with atonic drops in another), and epileptiform activity was observed in an additional two individuals. This report extends the number of affected individuals to 16 who are heterozygous for the de novo recurrent substitution p.(Val837Met). In contrast with the initial report, epilepsy was not a mandatory feature observed in this series. TRPM3 pathogenic variation should be considered in individuals with global developmental delays, moderate-severe intellectual disability with, or without, childhood-onset epilepsy.


Asunto(s)
Epilepsia , Enfermedades del Recién Nacido , Discapacidad Intelectual , Canales Catiónicos TRPM , Niño , Discapacidades del Desarrollo/genética , Humanos , Recién Nacido , Discapacidad Intelectual/genética , Hipotonía Muscular/genética , Mutación Missense , Canales Catiónicos TRPM/genética , Secuenciación del Exoma
8.
Am J Med Genet A ; 188(10): 2958-2968, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35904974

RESUMEN

Congenital diaphragmatic hernia (CDH) can occur in isolation or in conjunction with other birth defects (CDH+). A molecular etiology can only be identified in a subset of CDH cases. This is due, in part, to an incomplete understanding of the genes that contribute to diaphragm development. Here, we used clinical and molecular data from 36 individuals with CDH+ who are cataloged in the DECIPHER database to identify genes that may play a role in diaphragm development and to discover new phenotypic expansions. Among this group, we identified individuals who carried putatively deleterious sequence or copy number variants affecting CREBBP, SMARCA4, UBA2, and USP9X. The role of these genes in diaphragm development was supported by their expression in the developing mouse diaphragm, their similarity to known CDH genes using data from a previously published and validated machine learning algorithm, and/or the presence of CDH in other individuals with their associated genetic disorders. Our results demonstrate how data from DECIPHER, and other public databases, can be used to identify new phenotypic expansions and suggest that CREBBP, SMARCA4, UBA2, and USP9X play a role in diaphragm development.


Asunto(s)
Hernias Diafragmáticas Congénitas , Animales , Variaciones en el Número de Copia de ADN , Diafragma , Hernias Diafragmáticas Congénitas/genética , Ratones
9.
Am J Hum Genet ; 102(1): 175-187, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29276005

RESUMEN

Histone lysine methyltransferases (KMTs) and demethylases (KDMs) underpin gene regulation. Here we demonstrate that variants causing haploinsufficiency of KMTs and KDMs are frequently encountered in individuals with developmental disorders. Using a combination of human variation databases and existing animal models, we determine 22 KMTs and KDMs as additional candidates for dominantly inherited developmental disorders. We show that KMTs and KDMs that are associated with, or are candidates for, dominant developmental disorders tend to have a higher level of transcription, longer canonical transcripts, more interactors, and a higher number and more types of post-translational modifications than other KMT and KDMs. We provide evidence to firmly associate KMT2C, ASH1L, and KMT5B haploinsufficiency with dominant developmental disorders. Whereas KMT2C or ASH1L haploinsufficiency results in a predominantly neurodevelopmental phenotype with occasional physical anomalies, KMT5B mutations cause an overgrowth syndrome with intellectual disability. We further expand the phenotypic spectrum of KMT2B-related disorders and show that some individuals can have severe developmental delay without dystonia at least until mid-childhood. Additionally, we describe a recessive histone lysine-methylation defect caused by homozygous or compound heterozygous KDM5B variants and resulting in a recognizable syndrome with developmental delay, facial dysmorphism, and camptodactyly. Collectively, these results emphasize the significance of histone lysine methylation in normal human development and the importance of this process in human developmental disorders. Our results demonstrate that systematic clinically oriented pathway-based analysis of genomic data can accelerate the discovery of rare genetic disorders.


Asunto(s)
Discapacidades del Desarrollo/enzimología , Discapacidades del Desarrollo/genética , Histona Demetilasas/genética , N-Metiltransferasa de Histona-Lisina/genética , Adolescente , Niño , Preescolar , Femenino , Haploinsuficiencia , Humanos , Masculino , Mutación
10.
Genet Med ; 23(5): 881-887, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33473207

RESUMEN

PURPOSE: Neurodevelopmental disorders (NDDs) encompass a spectrum of genetically heterogeneous disorders with features that commonly include developmental delay, intellectual disability, and autism spectrum disorders. We sought to delineate the molecular and phenotypic spectrum of a novel neurodevelopmental disorder caused by variants in the GNAI1 gene. METHODS: Through large cohort trio-based exome sequencing and international data-sharing, we identified 24 unrelated individuals with NDD phenotypes and a variant in GNAI1, which encodes the inhibitory Gαi1 subunit of heterotrimeric G-proteins. We collected detailed genotype and phenotype information for each affected individual. RESULTS: We identified 16 unique variants in GNAI1 in 24 affected individuals; 23 occurred de novo and 1 was inherited from a mosaic parent. Most affected individuals have a severe neurodevelopmental disorder. Core features include global developmental delay, intellectual disability, hypotonia, and epilepsy. CONCLUSION: This collaboration establishes GNAI1 variants as a cause of NDDs. GNAI1-related NDD is most often characterized by severe to profound delays, hypotonia, epilepsy that ranges from self-limiting to intractable, behavior problems, and variable mild dysmorphic features.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Niño , Discapacidades del Desarrollo/genética , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Hipotonía Muscular/diagnóstico , Hipotonía Muscular/genética , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Convulsiones/genética , Secuenciación del Exoma
11.
Acta Neuropathol ; 141(3): 431-453, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33449170

RESUMEN

Mutations in the sarcomeric protein titin, encoded by TTN, are emerging as a common cause of myopathies. The diagnosis of a TTN-related myopathy is, however, often not straightforward due to clinico-pathological overlap with other myopathies and the prevalence of TTN variants in control populations. Here, we present a combined clinico-pathological, genetic and biophysical approach to the diagnosis of TTN-related myopathies and the pathogenicity ascertainment of TTN missense variants. We identified 30 patients with a primary TTN-related congenital myopathy (CM) and two truncating variants, or one truncating and one missense TTN variant, or homozygous for one TTN missense variant. We found that TTN-related myopathies show considerable overlap with other myopathies but are strongly suggested by a combination of certain clinico-pathological features. Presentation was typically at birth with the clinical course characterized by variable progression of weakness, contractures, scoliosis and respiratory symptoms but sparing of extraocular muscles. Cardiac involvement depended on the variant position. Our biophysical analyses demonstrated that missense mutations associated with CMs are strongly destabilizing and exert their effect when expressed on a truncating background or in homozygosity. We hypothesise that destabilizing TTN missense mutations phenocopy truncating variants and are a key pathogenic feature of recessive titinopathies that might be amenable to therapeutic intervention.


Asunto(s)
Conectina/genética , Miotonía Congénita/diagnóstico , Miotonía Congénita/genética , Miotonía Congénita/patología , Adolescente , Adulto , Anciano , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Persona de Mediana Edad , Mutación Missense , Adulto Joven
12.
Hum Genet ; 139(5): 575-592, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32193685

RESUMEN

RAD21 encodes a key component of the cohesin complex, and variants in RAD21 have been associated with Cornelia de Lange Syndrome (CdLS). Limited information on phenotypes attributable to RAD21 variants and genotype-phenotype relationships is currently published. We gathered a series of 49 individuals from 33 families with RAD21 alterations [24 different intragenic sequence variants (2 recurrent), 7 unique microdeletions], including 24 hitherto unpublished cases. We evaluated consequences of 12 intragenic variants by protein modelling and molecular dynamic studies. Full clinical information was available for 29 individuals. Their phenotype is an attenuated CdLS phenotype compared to that caused by variants in NIPBL or SMC1A for facial morphology, limb anomalies, and especially for cognition and behavior. In the 20 individuals with limited clinical information, additional phenotypes include Mungan syndrome (in patients with biallelic variants) and holoprosencephaly, with or without CdLS characteristics. We describe several additional cases with phenotypes including sclerocornea, in which involvement of the RAD21 variant is uncertain. Variants were frequently familial, and genotype-phenotype analyses demonstrated striking interfamilial and intrafamilial variability. Careful phenotyping is essential in interpreting consequences of RAD21 variants, and protein modeling and dynamics can be helpful in determining pathogenicity. The current study should be helpful when counseling families with a RAD21 variation.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Deleción Cromosómica , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Síndrome de Cornelia de Lange/genética , Síndrome de Cornelia de Lange/patología , Mutación , Adolescente , Adulto , Proteínas de Ciclo Celular/química , Niño , Preescolar , Proteínas de Unión al ADN/química , Femenino , Estudios de Asociación Genética , Genotipo , Humanos , Lactante , Recién Nacido , Masculino , Persona de Mediana Edad , Simulación de Dinámica Molecular , Fenotipo , Conformación Proteica , Adulto Joven
13.
Genet Med ; 22(3): 598-609, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31700164

RESUMEN

PURPOSE: Most classical aniridia is caused by PAX6 haploinsufficiency. PAX6 missense variants can be hypomorphic or mimic haploinsufficiency. We hypothesized that missense variants also cause previously undescribed disease by altering the affinity and/or specificity of PAX6 genomic interactions. METHODS: We screened PAX6 in 372 individuals with bilateral microphthalmia, anophthalmia, or coloboma (MAC) from the Medical Research Council Human Genetics Unit eye malformation cohort (HGUeye) and reviewed data from the Deciphering Developmental Disorders study. We performed cluster analysis on PAX6-associated ocular phenotypes by variant type and molecular modeling of the structural impact of 86 different PAX6 causative missense variants. RESULTS: Eight different PAX6 missense variants were identified in 17 individuals (15 families) with MAC, accounting for 4% (15/372) of our cohort. Seven altered the paired domain (p.[Arg26Gln]x1, p.[Gly36Val]x1, p.[Arg38Trp]x2, p.[Arg38Gln]x1, p.[Gly51Arg]x2, p.[Ser54Arg]x2, p.[Asn124Lys]x5) and one the homeodomain (p.[Asn260Tyr]x1). p.Ser54Arg and p.Asn124Lys were exclusively associated with severe bilateral microphthalmia. MAC-associated variants were predicted to alter but not ablate DNA interaction, consistent with the electrophoretic mobility shifts observed using mutant paired domains with well-characterized PAX6-binding sites. We found no strong evidence for novel PAX6-associated extraocular disease. CONCLUSION: Altering the affinity and specificity of PAX6-binding genome-wide provides a plausible mechanism for the worse-than-null effects of MAC-associated missense variants.


Asunto(s)
Anomalías del Ojo/genética , Predisposición Genética a la Enfermedad , Microftalmía/genética , Factor de Transcripción PAX6/genética , Adolescente , Adulto , Sitios de Unión/genética , Niño , Preescolar , Estudios de Cohortes , Proteínas de Unión al ADN/genética , Anomalías del Ojo/patología , Femenino , Heterocigoto , Humanos , Lactante , Masculino , Microftalmía/patología , Mutación Missense/genética , Linaje , Adulto Joven
14.
Genet Med ; 22(5): 878-888, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31949314

RESUMEN

PURPOSE: Determination of genotypic/phenotypic features of GATAD2B-associated neurodevelopmental disorder (GAND). METHODS: Fifty GAND subjects were evaluated to determine consistent genotypic/phenotypic features. Immunoprecipitation assays utilizing in vitro transcription-translation products were used to evaluate GATAD2B missense variants' ability to interact with binding partners within the nucleosome remodeling and deacetylase (NuRD) complex. RESULTS: Subjects had clinical findings that included macrocephaly, hypotonia, intellectual disability, neonatal feeding issues, polyhydramnios, apraxia of speech, epilepsy, and bicuspid aortic valves. Forty-one novelGATAD2B variants were identified with multiple variant types (nonsense, truncating frameshift, splice-site variants, deletions, and missense). Seven subjects were identified with missense variants that localized within two conserved region domains (CR1 or CR2) of the GATAD2B protein. Immunoprecipitation assays revealed several of these missense variants disrupted GATAD2B interactions with its NuRD complex binding partners. CONCLUSIONS: A consistent GAND phenotype was caused by a range of genetic variants in GATAD2B that include loss-of-function and missense subtypes. Missense variants were present in conserved region domains that disrupted assembly of NuRD complex proteins. GAND's clinical phenotype had substantial clinical overlap with other disorders associated with the NuRD complex that involve CHD3 and CHD4, with clinical features of hypotonia, intellectual disability, cardiac defects, childhood apraxia of speech, and macrocephaly.


Asunto(s)
Discapacidad Intelectual , Megalencefalia , Trastornos del Neurodesarrollo , Niño , Femenino , Factores de Transcripción GATA/genética , Humanos , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Nucleosomas , Fenotipo , Embarazo , Proteínas Represoras
16.
Am J Med Genet C Semin Med Genet ; 181(4): 557-564, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31721432

RESUMEN

CHD8 has been reported as an autism susceptibility/intellectual disability gene but emerging evidence suggests that it additionally causes an overgrowth phenotype. This study reports 27 unrelated patients with pathogenic or likely pathogenic CHD8 variants (25 null variants, two missense variants) and a male:female ratio of 21:6 (3.5:1, p < .01). All patients presented with intellectual disability, with 85% in the mild or moderate range, and 85% had a height and/or head circumference ≥2 standard deviations above the mean, meeting our clinical criteria for overgrowth. Behavioral problems were reported in the majority of patients (78%), with over half (56%) either formally diagnosed with an autistic spectrum disorder or described as having autistic traits. Additional clinical features included neonatal hypotonia (33%), and less frequently seizures, pes planus, scoliosis, fifth finger clinodactyly, umbilical hernia, and glabellar hemangioma (≤15% each). These results suggest that, in addition to its established link with autism and intellectual disability, CHD8 causes an overgrowth phenotype, and should be considered in the differential diagnosis of patients presenting with increased height and/or head circumference in association with intellectual disability.


Asunto(s)
Cadherinas/genética , Trastornos del Crecimiento/genética , Fenotipo , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Discapacidad Intelectual/genética , Masculino , Síndrome , Adulto Joven
17.
Am J Hum Genet ; 99(3): 683-694, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27545674

RESUMEN

The ubiquitin fold modifier 1 (UFM1) cascade is a recently identified evolutionarily conserved ubiquitin-like modification system whose function and link to human disease have remained largely uncharacterized. By using exome sequencing in Finnish individuals with severe epileptic syndromes, we identified pathogenic compound heterozygous variants in UBA5, encoding an activating enzyme for UFM1, in two unrelated families. Two additional individuals with biallelic UBA5 variants were identified from the UK-based Deciphering Developmental Disorders study and one from the Northern Finland Intellectual Disability cohort. The affected individuals (n = 9) presented in early infancy with severe irritability, followed by dystonia and stagnation of development. Furthermore, the majority of individuals display postnatal microcephaly and epilepsy and develop spasticity. The affected individuals were compound heterozygous for a missense substitution, c.1111G>A (p.Ala371Thr; allele frequency of 0.28% in Europeans), and a nonsense variant or c.164G>A that encodes an amino acid substitution p.Arg55His, but also affects splicing by facilitating exon 2 skipping, thus also being in effect a loss-of-function allele. Using an in vitro thioester formation assay and cellular analyses, we show that the p.Ala371Thr variant is hypomorphic with attenuated ability to transfer the activated UFM1 to UFC1. Finally, we show that the CNS-specific knockout of Ufm1 in mice causes neonatal death accompanied by microcephaly and apoptosis in specific neurons, further suggesting that the UFM1 system is essential for CNS development and function. Taken together, our data imply that the combination of a hypomorphic p.Ala371Thr variant in trans with a loss-of-function allele in UBA5 underlies a severe infantile-onset encephalopathy.


Asunto(s)
Alelos , Encefalopatías/genética , Encefalopatías/metabolismo , Mutación/genética , Proteínas/genética , Enzimas Activadoras de Ubiquitina/genética , Ubiquitina/metabolismo , Animales , Animales Recién Nacidos , Apoptosis , Encefalopatías/patología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Estudios de Cohortes , Epilepsia/genética , Exoma/genética , Exones/genética , Fibroblastos/metabolismo , Fibroblastos/patología , Finlandia , Frecuencia de los Genes , Heterocigoto , Humanos , Lactante , Discapacidad Intelectual/genética , Ratones , Ratones Noqueados , Microcefalia/genética , Microcefalia/patología , Neuronas/metabolismo , Neuronas/patología , Proteínas/metabolismo , Espasmos Infantiles/genética , Espasmos Infantiles/metabolismo
18.
Am J Hum Genet ; 98(5): 981-992, 2016 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-27108798

RESUMEN

Gillespie syndrome (GS) is characterized by bilateral iris hypoplasia, congenital hypotonia, non-progressive ataxia, and progressive cerebellar atrophy. Trio-based exome sequencing identified de novo mutations in ITPR1 in three unrelated individuals with GS recruited to the Deciphering Developmental Disorders study. Whole-exome or targeted sequence analysis identified plausible disease-causing ITPR1 mutations in 10/10 additional GS-affected individuals. These ultra-rare protein-altering variants affected only three residues in ITPR1: Glu2094 missense (one de novo, one co-segregating), Gly2539 missense (five de novo, one inheritance uncertain), and Lys2596 in-frame deletion (four de novo). No clinical or radiological differences were evident between individuals with different mutations. ITPR1 encodes an inositol 1,4,5-triphosphate-responsive calcium channel. The homo-tetrameric structure has been solved by cryoelectron microscopy. Using estimations of the degree of structural change induced by known recessive- and dominant-negative mutations in other disease-associated multimeric channels, we developed a generalizable computational approach to indicate the likely mutational mechanism. This analysis supports a dominant-negative mechanism for GS variants in ITPR1. In GS-derived lymphoblastoid cell lines (LCLs), the proportion of ITPR1-positive cells using immunofluorescence was significantly higher in mutant than control LCLs, consistent with an abnormality of nuclear calcium signaling feedback control. Super-resolution imaging supports the existence of an ITPR1-lined nucleoplasmic reticulum. Mice with Itpr1 heterozygous null mutations showed no major iris defects. Purkinje cells of the cerebellum appear to be the most sensitive to impaired ITPR1 function in humans. Iris hypoplasia is likely to result from either complete loss of ITPR1 activity or structure-specific disruption of multimeric interactions.


Asunto(s)
Aniridia/etiología , Aniridia/patología , Ataxia Cerebelosa/etiología , Ataxia Cerebelosa/patología , Genes Dominantes/genética , Receptores de Inositol 1,4,5-Trifosfato/genética , Discapacidad Intelectual/etiología , Discapacidad Intelectual/patología , Mutación/genética , Adolescente , Adulto , Animales , Células Cultivadas , Niño , Femenino , Humanos , Receptores de Inositol 1,4,5-Trifosfato/química , Linfocitos/metabolismo , Linfocitos/patología , Masculino , Ratones , Microscopía Confocal , Persona de Mediana Edad , Linaje , Conformación Proteica
19.
Clin Genet ; 96(1): 72-84, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31001818

RESUMEN

Variants in the chromodomain helicase DNA-binding protein 8 (CHD8) have been associated with intellectual disability (ID), autism spectrum disorders (ASDs) and overgrowth and CHD8 is one of the causative genes for OGID (overgrowth and ID). We investigated 25 individuals with CHD8 protein truncating variants (PTVs), including 10 previously unreported patients and found a male to female ratio of 2.7:1 (19:7) and a pattern of common features: macrocephaly (62.5%), tall stature (47%), developmental delay and/or intellectual disability (81%), ASDs (84%), sleep difficulties (50%), gastrointestinal problems (40%), and distinct facial features. Most of the individuals in this cohort had moderate-to-severe ID, some had regression of speech (37%), seizures (27%) and hypotonia (27%) and two individuals were non-ambulant. Our study shows that haploinsufficiency of CHD8 is associated with a distinctive OGID syndrome with pronounced autistic traits and supports a sex-dependent penetrance of CHD8 PTVs in humans.


Asunto(s)
Proteínas de Unión al ADN/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética , Fenotipo , Factores de Transcripción/genética , Adolescente , Alelos , Sustitución de Aminoácidos , Niño , Preescolar , Facies , Femenino , Estudios de Asociación Genética/métodos , Genotipo , Humanos , Masculino , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética
20.
Clin Genet ; 95(6): 693-703, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30859559

RESUMEN

Noonan syndrome (NS) is characterised by distinctive facial features, heart defects, variable degrees of intellectual disability and other phenotypic manifestations. Although the mode of inheritance is typically dominant, recent studies indicate LZTR1 may be associated with both dominant and recessive forms. Seeking to describe the phenotypic characteristics of LZTR1-associated NS, we searched for likely pathogenic variants using two approaches. First, scrutiny of exomes from 9624 patients recruited by the Deciphering Developmental Disorders (DDDs) study uncovered six dominantly-acting mutations (p.R97L; p.Y136C; p.Y136H, p.N145I, p.S244C; p.G248R) of which five arose de novo, and three patients with compound-heterozygous variants (p.R210*/p.V579M; p.R210*/p.D531N; c.1149+1G>T/p.R688C). One patient also had biallelic loss-of-function mutations in NEB, consistent with a composite phenotype. After removing this complex case, analysis of human phenotype ontology terms indicated significant phenotypic similarities (P = 0.0005), supporting a causal role for LZTR1. Second, targeted sequencing of eight unsolved NS-like cases identified biallelic LZTR1 variants in three further subjects (p.W469*/p.Y749C, p.W437*/c.-38T>A and p.A461D/p.I462T). Our study strengthens the association of LZTR1 with NS, with de novo mutations clustering around the KT1-4 domains. Although LZTR1 variants explain ~0.1% of cases across the DDD cohort, the gene is a relatively common cause of unsolved NS cases where recessive inheritance is suspected.


Asunto(s)
Exoma , Síndrome de Noonan/genética , Factores de Transcripción/genética , Adolescente , Alelos , Niño , Preescolar , Estudios de Cohortes , Femenino , Ontología de Genes , Genes Dominantes , Genes Recesivos , Heterocigoto , Humanos , Lactante , Masculino , Mutación , Síndrome de Noonan/fisiopatología , Linaje , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA