RESUMEN
BACKGROUND: Neonatal hypoxic-ischemic encephalopathy is an important cause of death as well as long-term disability in survivors. Erythropoietin has been hypothesized to have neuroprotective effects in infants with hypoxic-ischemic encephalopathy, but its effects on neurodevelopmental outcomes when given in conjunction with therapeutic hypothermia are unknown. METHODS: In a multicenter, double-blind, randomized, placebo-controlled trial, we assigned 501 infants born at 36 weeks or more of gestation with moderate or severe hypoxic-ischemic encephalopathy to receive erythropoietin or placebo, in conjunction with standard therapeutic hypothermia. Erythropoietin (1000 U per kilogram of body weight) or saline placebo was administered intravenously within 26 hours after birth, as well as at 2, 3, 4, and 7 days of age. The primary outcome was death or neurodevelopmental impairment at 22 to 36 months of age. Neurodevelopmental impairment was defined as cerebral palsy, a Gross Motor Function Classification System level of at least 1 (on a scale of 0 [normal] to 5 [most impaired]), or a cognitive score of less than 90 (which corresponds to 0.67 SD below the mean, with higher scores indicating better performance) on the Bayley Scales of Infant and Toddler Development, third edition. RESULTS: Of 500 infants in the modified intention-to-treat analysis, 257 received erythropoietin and 243 received placebo. The incidence of death or neurodevelopmental impairment was 52.5% in the erythropoietin group and 49.5% in the placebo group (relative risk, 1.03; 95% confidence interval [CI], 0.86 to 1.24; P = 0.74). The mean number of serious adverse events per child was higher in the erythropoietin group than in the placebo group (0.86 vs. 0.67; relative risk, 1.26; 95% CI, 1.01 to 1.57). CONCLUSIONS: The administration of erythropoietin to newborns undergoing therapeutic hypothermia for hypoxic-ischemic encephalopathy did not result in a lower risk of death or neurodevelopmental impairment than placebo and was associated with a higher rate of serious adverse events. (Funded by the National Institute of Neurological Disorders and Stroke; ClinicalTrials.gov number, NCT02811263.).
Asunto(s)
Eritropoyetina , Hipotermia Inducida , Hipoxia-Isquemia Encefálica , Fármacos Neuroprotectores , Administración Intravenosa , Parálisis Cerebral/etiología , Método Doble Ciego , Eritropoyetina/administración & dosificación , Eritropoyetina/efectos adversos , Eritropoyetina/uso terapéutico , Humanos , Hipotermia Inducida/métodos , Hipoxia-Isquemia Encefálica/complicaciones , Hipoxia-Isquemia Encefálica/tratamiento farmacológico , Hipoxia-Isquemia Encefálica/terapia , Lactante , Recién Nacido , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/efectos adversos , Fármacos Neuroprotectores/uso terapéuticoRESUMEN
Children with sickle cell disease (SCD) demonstrate cerebral hemodynamic stress and are at high risk of strokes. We hypothesized that curative hematopoietic stem cell transplant (HSCT) normalizes cerebral hemodynamics in children with SCD compared with pre-transplant baseline. Whole-brain cerebral blood flow (CBF) and oxygen extraction fraction (OEF) were measured by magnetic resonance imaging 1 to 3 months before and 12 to 24 months after HSCT in 10 children with SCD. Three children had prior overt strokes, 5 children had prior silent strokes, and 1 child had abnormal transcranial Doppler ultrasound velocities. CBF and OEF of HSCT recipients were compared with non-SCD control participants and with SCD participants receiving chronic red blood cell transfusion therapy (CRTT) before and after a scheduled transfusion. Seven participants received matched sibling donor HSCT, and 3 participants received 8 out of 8 matched unrelated donor HSCT. All received reduced-intensity preparation and maintained engraftment, free of hemolytic anemia and SCD symptoms. Pre-transplant, CBF (93.5 mL/100 g/min) and OEF (36.8%) were elevated compared with non-SCD control participants, declining significantly 1 to 2 years after HSCT (CBF, 72.7 mL/100 g per minute; P = .004; OEF, 27.0%; P = .002), with post-HSCT CBF and OEF similar to non-SCD control participants. Furthermore, HSCT recipients demonstrated greater reduction in CBF (-19.4 mL/100 g/min) and OEF (-8.1%) after HSCT than children with SCD receiving CRTT after a scheduled transfusion (CBF, -0.9 mL/100 g/min; P = .024; OEF, -3.3%; P = .001). Curative HSCT normalizes whole-brain hemodynamics in children with SCD. This restoration of cerebral oxygen reserve may explain stroke protection after HSCT in this high-risk patient population.
Asunto(s)
Anemia de Células Falciformes , Trasplante de Células Madre Hematopoyéticas , Accidente Cerebrovascular , Humanos , Niño , Anemia de Células Falciformes/terapia , Accidente Cerebrovascular/prevención & control , Hemodinámica , Oxígeno , Circulación CerebrovascularRESUMEN
White matter (WM) fiber tract differences are present in autism spectrum disorder (ASD) and could be important markers of behavior. One of the earliest phenotypic differences in ASD are language atypicalities. Although language has been linked to WM in typical development, no work has evaluated this association in early ASD. Participants came from the Infant Brain Imaging Study and included 321 infant siblings of children with ASD at high likelihood (HL) for developing ASD; 70 HL infants were later diagnosed with ASD (HL-ASD), and 251 HL infants were not diagnosed with ASD (HL-Neg). A control sample of 140 low likelihood infants not diagnosed with ASD (LL-Neg) were also included. Infants contributed expressive language, receptive language, and diffusion tensor imaging data at 6-, 12-, and 24 months. Mixed effects regression models were conducted to evaluate associations between WM and language trajectories. Trajectories of microstructural changes in the right arcuate fasciculus were associated with expressive language development. HL-ASD infants demonstrated a different developmental pattern compared to the HL-Neg and LL-Neg groups, wherein the HL-ASD group exhibited a positive association between WM fractional anisotropy and language whereas HL-Neg and LL-Neg groups showed weak or no association. No other fiber tracts demonstrated significant associations with language. In conclusion, results indicated arcuate fasciculus WM is linked to language in early toddlerhood for autistic toddlers, with the strongest associations emerging around 24 months. To our knowledge, this is the first study to evaluate associations between language and WM development during the pre-symptomatic period in ASD.
Asunto(s)
Trastorno del Espectro Autista , Encéfalo , Imagen de Difusión Tensora , Desarrollo del Lenguaje , Sustancia Blanca , Humanos , Trastorno del Espectro Autista/fisiopatología , Trastorno del Espectro Autista/patología , Sustancia Blanca/patología , Sustancia Blanca/diagnóstico por imagen , Masculino , Femenino , Lactante , Imagen de Difusión Tensora/métodos , Preescolar , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Hermanos , LenguajeRESUMEN
The amygdala undergoes a period of overgrowth in the first year of life, resulting in enlarged volume by 12 months in infants later diagnosed with ASD. The overgrowth of the amygdala may have functional consequences during infancy. We investigated whether amygdala connectivity differs in 12-month-olds at high likelihood (HL) for ASD (defined by having an older sibling with autism), compared to those at low likelihood (LL). We examined seed-based connectivity of left and right amygdalae, hypothesizing that the HL and LL groups would differ in amygdala connectivity, especially with the visual cortex, based on our prior reports demonstrating that components of visual circuitry develop atypically and are linked to genetic liability for autism. We found that HL infants exhibited weaker connectivity between the right amygdala and the left visual cortex, as well as between the left amygdala and the right anterior cingulate, with evidence that these patterns occur in distinct subgroups of the HL sample. Amygdala connectivity strength with the visual cortex was related to motor and communication abilities among HL infants. Findings indicate that aberrant functional connectivity between the amygdala and visual regions is apparent in infants with genetic liability for ASD and may have implications for early differences in adaptive behaviors.
Asunto(s)
Amígdala del Cerebelo , Imagen por Resonancia Magnética , Corteza Visual , Humanos , Amígdala del Cerebelo/diagnóstico por imagen , Amígdala del Cerebelo/fisiopatología , Masculino , Femenino , Lactante , Corteza Visual/diagnóstico por imagen , Corteza Visual/fisiopatología , Corteza Visual/crecimiento & desarrollo , Vías Nerviosas/fisiopatología , Vías Nerviosas/diagnóstico por imagen , Trastorno Autístico/genética , Trastorno Autístico/fisiopatología , Trastorno Autístico/diagnóstico por imagen , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/fisiopatología , Trastorno del Espectro Autista/diagnóstico por imagen , Predisposición Genética a la Enfermedad/genéticaRESUMEN
Central nervous system (CNS) injury is common in sickle cell disease (SCD) and occurs early in life. Hydroxyurea is safe and efficacious for treatment of SCD, but high-quality evidence from randomized trials to estimate its neuroprotective effect is scant. HU Prevent was a randomized (1:1), double-blind, phase II feasibility/pilot trial of dose-escalated hydroxyurea vs. placebo for the primary prevention of CNS injury in children with HbSS or HbS-ß0-thalassemia subtypes of SCD age 12-48 months with normal neurological examination, MRI of the brain, and cerebral blood flow velocity. We hypothesized that hydroxyurea would reduce by 50% the incidence of CNS injury. Two outcomes were compared: primary-a composite of silent cerebral infarction, elevated cerebral blood flow velocity, transient ischemic attack, or stroke; secondary-a weighted score estimating the risk of suffering the consequences of stroke (the Stroke Consequences Risk Score-SCRS), based on the same outcome events. Six participants were randomized to each group. One participant in the hydroxyurea group had a primary outcome vs. four in the placebo group (incidence rate ratio [90% CI] 0.216 [0.009, 1.66], p = .2914) (~80% reduction in the hydroxyurea group). The mean SCRS score was 0.078 (SD 0.174) in the hydroxyurea group, 0.312 (SD 0.174) in the placebo group, p = .072, below the p-value of .10 often used to justify subsequent phase III investigations. Serious adverse events related to study procedures occurred in 3/41 MRIs performed, all related to sedation. These results suggest that hydroxyurea may have profound neuroprotective effect in children with SCD and support a definitive phase III study to encourage the early use of hydroxyurea in all infants with SCD.
Asunto(s)
Anemia de Células Falciformes , Estudios de Factibilidad , Hidroxiurea , Humanos , Hidroxiurea/uso terapéutico , Hidroxiurea/administración & dosificación , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/tratamiento farmacológico , Preescolar , Proyectos Piloto , Masculino , Femenino , Lactante , Método Doble Ciego , Antidrepanocíticos/uso terapéutico , Antidrepanocíticos/efectos adversos , Accidente Cerebrovascular/prevención & control , Accidente Cerebrovascular/etiología , Lesiones Encefálicas/etiología , Lesiones Encefálicas/prevención & control , Infarto Cerebral/prevención & control , Infarto Cerebral/etiologíaRESUMEN
BACKGROUND: Silent cerebral infarcts (SCI) in sickle cell anemia (SCA) are associated with future strokes and cognitive impairment, warranting early diagnosis and treatment. Detection of SCI, however, is limited by their small size, especially when neuroradiologists are unavailable. We hypothesized that deep learning may permit automated SCI detection in children and young adults with SCA as a tool to identify the presence and extent of SCI in clinical and research settings. METHODS: We utilized UNet-a deep learning model-for fully automated SCI segmentation. We trained and optimized UNet using brain magnetic resonance imaging from the SIT trial (Silent Infarct Transfusion). Neuroradiologists provided the ground truth for SCI diagnosis, while a vascular neurologist manually delineated SCI on fluid-attenuated inversion recovery and provided the ground truth for SCI segmentation. UNet was optimized for the highest spatial overlap between automatic and manual delineation (dice similarity coefficient). The optimized UNet was externally validated using an independent single-center prospective cohort of SCA participants. Model performance was evaluated through sensitivity and accuracy (%correct cases) for SCI diagnosis, dice similarity coefficient, intraclass correlation coefficient (metric of volumetric agreement), and Spearman correlation. RESULTS: The SIT trial (n=926; 31% with SCI; median age, 8.9 years) and external validation (n=80; 50% with SCI; age, 11.5 years) cohorts had small median lesion volumes of 0.40 and 0.25 mL, respectively. Compared with the neuroradiology diagnosis, UNet predicted SCI presence with 100% sensitivity and 74% accuracy. In magnetic resonance imaging with SCI, UNet reached a moderate spatial agreement (dice similarity coefficient, 0.48) and high volumetric agreement (intraclass correlation coefficient, 0.76; ρ=0.72; P<0.001) between automatic and manual segmentations. CONCLUSIONS: UNet, trained using a large pediatric SCA magnetic resonance imaging data set, sensitively detected small SCI in children and young adults with SCA. While additional training is needed, UNet may be integrated into the clinical workflow as a screening tool, aiding in SCI diagnosis.
Asunto(s)
Anemia de Células Falciformes , Niño , Humanos , Adulto Joven , Estudios Prospectivos , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/diagnóstico por imagen , Anemia de Células Falciformes/terapia , Infarto Cerebral/complicaciones , Encéfalo , Imagen por Resonancia MagnéticaRESUMEN
INTRODUCTION: Erythropoietin (Epo) is a putative neuroprotective therapy that did not improve overall outcomes in a phase 3 randomized controlled trial for neonates with moderate or severe hypoxic-ischemic encephalopathy (HIE). However, HIE is a heterogeneous disorder, and it remains to be determined whether Epo had beneficial effects on a subset of perinatal brain injuries. METHODS: This study was a secondary analysis of neuroimaging data from the High-dose Erythropoietin for Asphyxia and Encephalopathy (HEAL) Trial, which was conducted from 2016 - 2021 at 17 sites involving 23 US academic medical centers. Participants were neonates >36 weeks' gestation undergoing therapeutic hypothermia for moderate or severe HIE who received 5 doses of study drug (Epoetin alpha 1000 U/kg/dose) or placebo in the first week of life. Treatment assignment was stratified by trial site and severity of encephalopathy. The primary outcome was the locus, pattern and acuity of brain injury as determined by three independent readers using a validated HIE Magnetic Resonance Imaging (MRI) scoring system. RESULTS: Of the 500 infants enrolled in HEAL, 470 (94%) had high quality MRI data obtained at a median of 4.9 days of age (IQR 4.5 - 5.8). The incidence of injury to the deep grey nuclei, cortex, white matter, brainstem and cerebellum was similar between Epo and placebo groups. Likewise, the distribution of injury patterns was similar between groups. Among infants imaged at less than 8 days (n=414), 94 (23%) evidenced only acute, 93 (22%) only subacute and 89 (21%) both acute and subacute injuries, with similar distribution across treatment groups. CONCLUSION: Adjuvant erythropoietin did not reduce the incidence of regional brain injury. Subacute brain injury was more common than previously reported, which has key implications for the development of adjuvant neuroprotective therapies for this population.
RESUMEN
Background Multiple qualitative scoring systems have been created to capture the imaging severity of hypoxic ischemic brain injury. Purpose To evaluate quantitative volumes of acute brain injury at MRI in neonates with hypoxic ischemic brain injury and correlate these findings with 24-month neurodevelopmental outcomes and qualitative brain injury scoring by radiologists. Materials and Methods In this secondary analysis, brain diffusion-weighted MRI data from neonates in the High-dose Erythropoietin for Asphyxia and Encephalopathy trial, which recruited participants between January 2017 and October 2019, were analyzed. Volume of acute brain injury, defined as brain with apparent diffusion coefficient (ADC) less than 800 × 10-6 mm2/sec, was automatically computed across the whole brain and within the thalami and white matter. Outcomes of death and neurodevelopmental impairment (NDI) were recorded at 24-month follow-up. Associations between the presence and volume (in milliliters) of acute brain injury with 24-month outcomes were evaluated using multiple logistic regression. The correlation between quantitative acute brain injury volume and qualitative MRI scores was assessed using the Kendall tau-b test. Results A total of 416 neonates had available MRI data (mean gestational age, 39.1 weeks ± 1.4 [SD]; 235 male) and 113 (27%) showed evidence of acute brain injury at MRI. Of the 387 participants with 24-month follow-up data, 185 (48%) died or had any NDI. Volume of acute injury greater than 1 mL (odds ratio [OR], 13.9 [95% CI: 5.93, 32.45]; P < .001) and presence of any acute injury in the brain (OR, 4.5 [95% CI: 2.6, 7.8]; P < .001) were associated with increased odds of death or any NDI. Quantitative whole-brain acute injury volume was strongly associated with radiologists' qualitative scoring of diffusion-weighted images (Kendall tau-b = 0.56; P < .001). Conclusion Automated quantitative volume of brain injury is associated with death, moderate to severe NDI, and cerebral palsy in neonates with hypoxic ischemic encephalopathy and correlated well with qualitative MRI scoring of acute brain injury. Clinical trial registration no. NCT02811263 © RSNA, 2023 Supplemental material is available for this article. See also the editorial by Huisman in this issue.
Asunto(s)
Lesiones Encefálicas , Hipoxia-Isquemia Encefálica , Recién Nacido , Masculino , Humanos , Lactante , Benchmarking , Imagen por Resonancia Magnética , Imagen de Difusión por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Hipoxia-Isquemia Encefálica/diagnóstico por imagenRESUMEN
BACKGROUND: In newborns with hypoxic-ischemic encephalopathy (HIE), the correlation between neonatal neuroimaging and the degree of neurodevelopmental impairment (NDI) is unclear. METHODS: Infants with HIE enrolled in a randomized controlled trial underwent neonatal MRI/MR spectroscopy (MRS) using a harmonized protocol at 4-6 days of age. The severity of brain injury was measured with a validated scoring system. Using proportional odds regression, we calculated adjusted odds ratios (aOR) for the associations between MRI/MRS measures of injury and primary ordinal outcome (i.e., normal, mild NDI, moderate NDI, severe NDI, or death) at age 2 years. RESULTS: Of 451 infants with MRI/MRS at a median age of 5 days (IQR 4.5-5.8), outcomes were normal (51%); mild (12%), moderate (14%), severe NDI (13%); or death (9%). MRI injury score (aOR 1.06, 95% CI 1.05, 1.07), severe brain injury (aOR 39.6, 95% CI 16.4, 95.6), and MRS lactate/n-acetylaspartate (NAA) ratio (aOR 1.6, 95% CI 1.4,1.8) were associated with worse primary outcomes. Infants with mild/moderate MRI brain injury had similar BSID-III cognitive, language, and motor scores as infants with no injury. CONCLUSION: In the absence of severe injury, brain MRI/MRS does not accurately discriminate the degree of NDI. Given diagnostic uncertainty, families need to be counseled regarding a range of possible neurodevelopmental outcomes. IMPACT: Half of all infants with hypoxic-ischemic encephalopathy (HIE) enrolled in a large clinical trial either died or had neurodevelopmental impairment at age 2 years despite receiving therapeutic hypothermia. Severe brain injury and a global pattern of brain injury on MRI were both strongly associated with death or neurodevelopmental impairment. Infants with mild or moderate brain injury had similar mean BSID-III cognitive, language, and motor scores as infants with no brain injury on MRI. Given the prognostic uncertainty of brain MRI among infants with less severe degrees of brain injury, families should be counseled regarding a range of possible neurodevelopmental outcomes.
Asunto(s)
Lesiones Encefálicas , Hipotermia Inducida , Hipoxia-Isquemia Encefálica , Humanos , Recién Nacido , Lactante , Preescolar , Hipoxia-Isquemia Encefálica/diagnóstico por imagen , Hipoxia-Isquemia Encefálica/terapia , Hipoxia-Isquemia Encefálica/complicaciones , Imagen por Resonancia Magnética/métodos , Neuroimagen , Espectroscopía de Resonancia Magnética , Hipotermia Inducida/métodos , Lesiones Encefálicas/complicaciones , Lesiones Encefálicas/diagnóstico por imagen , Lesiones Encefálicas/terapiaRESUMEN
Brain enlargement has been observed in children with autism spectrum disorder (ASD), but the timing of this phenomenon, and the relationship between ASD and the appearance of behavioural symptoms, are unknown. Retrospective head circumference and longitudinal brain volume studies of two-year olds followed up at four years of age have provided evidence that increased brain volume may emerge early in development. Studies of infants at high familial risk of autism can provide insight into the early development of autism and have shown that characteristic social deficits in ASD emerge during the latter part of the first and in the second year of life. These observations suggest that prospective brain-imaging studies of infants at high familial risk of ASD might identify early postnatal changes in brain volume that occur before an ASD diagnosis. In this prospective neuroimaging study of 106 infants at high familial risk of ASD and 42 low-risk infants, we show that hyperexpansion of the cortical surface area between 6 and 12 months of age precedes brain volume overgrowth observed between 12 and 24 months in 15 high-risk infants who were diagnosed with autism at 24 months. Brain volume overgrowth was linked to the emergence and severity of autistic social deficits. A deep-learning algorithm that primarily uses surface area information from magnetic resonance imaging of the brain of 6-12-month-old individuals predicted the diagnosis of autism in individual high-risk children at 24 months (with a positive predictive value of 81% and a sensitivity of 88%). These findings demonstrate that early brain changes occur during the period in which autistic behaviours are first emerging.
Asunto(s)
Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/patología , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/psicología , Preescolar , Salud de la Familia , Femenino , Humanos , Lactante , Estudios Longitudinales , Masculino , Neuroimagen , Pronóstico , Riesgo , Conducta SocialRESUMEN
BACKGROUND: Mild hypoxic-ischemic encephalopathy (HIE) is increasingly recognized as a risk factor for neonatal brain injury. We examined the timing and pattern of brain injury in mild HIE. METHODS: This retrospective cohort study includes infants with mild HIE treated at 9 hospitals. Neonatal brain MRIs were scored by 2 reviewers using a validated classification system, with discrepancies resolved by consensus. Severity and timing of MRI brain injury (i.e., acute, subacute, chronic) was scored on the subset of MRIs that were performed at or before 8 days of age. RESULTS: Of 142 infants with mild HIE, 87 (61%) had injury on MRI at median age 5 (IQR 4-6) days. Watershed (23%), deep gray (20%) and punctate white matter (18%) injury were most common. Among the 125 (88%) infants who received a brain MRI at ≤8 days, mild (44%) injury was more common than moderate (11%) or severe (4%) injury. Subacute (37%) lesions were more commonly observed than acute (32%) or chronic lesions (1%). CONCLUSION: Subacute brain injury is common in newborn infants with mild HIE. Novel neuroprotective treatments for mild HIE will ideally target both subacute and acute injury mechanisms. IMPACT: Almost two-thirds of infants with mild HIE have evidence of brain injury on MRI obtained in the early neonatal period. Subacute brain injury was seen in 37% of infants with mild HIE. Neuroprotective treatments for mild HIE will ideally target both acute and subacute injury mechanisms.
Asunto(s)
Lesiones Encefálicas , Hipotermia Inducida , Hipoxia-Isquemia Encefálica , Lactante , Recién Nacido , Humanos , Estudios Retrospectivos , Hipoxia-Isquemia Encefálica/terapia , Imagen por Resonancia Magnética , Lesiones Encefálicas/terapia , Encéfalo/diagnóstico por imagen , Encéfalo/patologíaRESUMEN
Chronic transfusion therapy (CTT) prevents stroke in selected patients with sickle cell anemia (SCA). We have shown that CTT mitigates signatures of cerebral metabolic stress, reflected by elevated oxygen extraction fraction (OEF), which likely drives stroke risk reduction. The region of highest OEF falls within the border zone, where cerebral blood flow (CBF) nadirs; OEF in this region was reduced after CTT. The neuroprotective efficacy of hydroxyurea (HU) remains unclear. To test our hypothesis that patients receiving HU therapy have lower cerebral metabolic stress compared with patients not receiving disease-modifying therapy, we prospectively obtained brain magnetic resonance imaging scans with voxel-wise measurements of CBF and OEF in 84 participants with SCA who were grouped by therapy: no disease-modifying therapy, HU, or CTT. There was no difference in whole-brain CBF among the 3 cohorts (P = .148). However, whole-brain OEF was significantly different (P < .001): participants without disease-modifying therapy had the highest OEF (median 42.9% [interquartile range (IQR) 39.1%-49.1%]), followed by HU treatment (median 40.7% [IQR 34.9%-43.6%]), whereas CTT treatment had the lowest values (median 35.3% [IQR 32.2%-38.9%]). Moreover, the percentage of white matter at highest risk for ischemia, defined by OEF greater than 40% and 42.5%, was lower in the HU cohort compared with the untreated cohort (P = .025 and P = .034 respectively), but higher compared with the CTT cohort (P = .018 and P = .029 respectively). We conclude that HU may offer neuroprotection by mitigating cerebral metabolic stress in patients with SCA, but not to the same degree as CTT.
Asunto(s)
Anemia de Células Falciformes , Hidroxiurea/administración & dosificación , Imagen por Resonancia Magnética , Fármacos Neuroprotectores/administración & dosificación , Estrés Fisiológico/efectos de los fármacos , Accidente Cerebrovascular , Adolescente , Adulto , Anemia de Células Falciformes/diagnóstico por imagen , Anemia de Células Falciformes/tratamiento farmacológico , Anemia de Células Falciformes/metabolismo , Circulación Cerebrovascular/efectos de los fármacos , Niño , Femenino , Humanos , Masculino , Consumo de Oxígeno/efectos de los fármacos , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/prevención & controlRESUMEN
BACKGROUND: Cervical remodeling is an important aspect of birth timing. Before cervical ripening, the collagen fibers are arranged in a closely interweaved network, but during ripening, the fibers become disorganized and the cervix becomes more hydrated. To quantitatively measure cervical remodeling, we need a noninvasive method to monitor changes in cervical collagen fiber organization and hydration in vivo. OBJECTIVE: To use diffusion tensor imaging to image and quantify the spatial and temporal differences in cervical microstructure between normal early and late pregnancies. STUDY DESIGN: After institutional review board approval and consent, a group of healthy women in early pregnancy (22 patients at 12-14 weeks' gestation) and a group in late pregnancy (27 patients at 36-38 weeks' gestation) underwent magnetic resonance imaging on a Siemens MAGNETOM Vida 3 Tesla unit. Diffusion tensor imaging of the cervix in the axial plane was performed with a two-dimensional single-shot echo planar imaging diffusion-weighted sequence. In early and late pregnancy groups, the differences of the diffusion tensor imaging measures were compared between the subglandular zone and the outer stroma regions of the cervix. In addition, the diffusion tensor imaging measures were compared between the early and late pregnancy groups. Finally, for the late pregnancy group, the diffusion tensor imaging measures were compared between the primipara and multipara groups. RESULTS: Diffusion tensor imaging measures of microstructure significantly differed between the subglandular zone and outer stroma regions of the cervix in both early and late pregnancies. In the subglandular zone, fractional anisotropy was lower in the late pregnancy group than in the early pregnancy group (0.37 [0.34-0.42] vs 0.50 [0.43-0.58]; P<.0005), suggesting increased collagen fiber disorganization in this zone. In addition, mean diffusivity was higher in the late pregnancy group than in the early pregnancy group (1.84 [1.73-2.02] mm2/sec×10-3 vs 1.56 [1.42-1.69] mm2/sec×10-3; P=.001), suggesting increased hydration in the subglandular zone. In the outer stroma, neither fractional anisotropy (0.44 [0.40-0.50] vs 0.41 [0.37-0.43]; P=.095) nor mean diffusivity (2.09 [1.92-2.25] mm2/sec×10-3 vs 2.12 [2.04-2.24] mm2/sec×10-3; P=.269) significantly differed between early pregnancy and late pregnancy, suggesting insignificant temporal microstructural changes in this cervical zone. Diffusion tensor imaging measures did not significantly differ between cervixes from primiparous and multiparous women in late pregnancy. CONCLUSION: This in vivo study demonstrates that diffusion tensor imaging can noninvasively quantify the microstructural differences in collagen fiber organization and hydration in cervical subregions between early pregnancy and late pregnancy.
Asunto(s)
Cuello del Útero/diagnóstico por imagen , Ultrasonografía Prenatal , Adulto , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Embarazo , Primer Trimestre del Embarazo , Tercer Trimestre del Embarazo , Adulto JovenRESUMEN
BACKGROUND: Diagnostic shifts at early ages may provide invaluable insights into the nature of separation between autism spectrum disorder (ASD) and typical development. Recent conceptualizations of ASD suggest the condition is only fuzzily separated from non-ASD, with intermediate cases between the two. These intermediate cases may shift along a transition region over time, leading to apparent instability of diagnosis. METHODS: We used a cohort of children with high ASD risk, by virtue of having an older sibling with ASD, assessed at 24 months (N = 212) and 36 months (N = 191). We applied machine learning to empirically characterize the classification boundary between ASD and non-ASD, using variables quantifying developmental and adaptive skills. We computed the distance of children to the classification boundary. RESULTS: Children who switched diagnostic labels from 24 to 36 months, in both directions, (dynamic group) had intermediate phenotypic profiles. They were closer to the classification boundary compared to children who had stable diagnoses, both at 24 months (Cohen's d = .52) and at 36 months (d = .75). The magnitude of change in distance between the two time points was similar for the dynamic and stable groups (Cohen's d = .06), and diagnostic shifts were not associated with a large change. At the individual level, a few children in the dynamic group showed substantial change. CONCLUSIONS: Our results suggested that a diagnostic shift was largely due to a slight movement within a transition region between ASD and non-ASD. This fact highlights the need for more vigilant surveillance and intervention strategies. Young children with intermediate phenotypes may have an increased susceptibility to gain or lose their diagnosis at later ages, calling attention to the inherently dynamic nature of early ASD diagnoses.
Asunto(s)
Trastorno del Espectro Autista , Trastorno del Espectro Autista/diagnóstico , Preescolar , Estudios de Cohortes , Diagnóstico Precoz , Humanos , Fenotipo , HermanosRESUMEN
The corpus callosum (CC) is the largest connective pathway in the human brain, linking cerebral hemispheres. There is longstanding debate in the scientific literature whether sex differences are evident in this structure, with many studies indicating the structure is larger in females. However, there are few data pertaining to this issue in infancy, during which time the most rapid developmental changes to the CC occur. In this study, we examined longitudinal brain imaging data collected from 104 infants at ages 6, 12, and 24 months. We identified sex differences in brain-size adjusted CC area and thickness characterized by a steeper rate of growth in males versus females from ages 6-24 months. In contrast to studies of older children and adults, CC size was larger for male compared to female infants. Based on diffusion tensor imaging data, we found that CC thickness is significantly associated with underlying microstructural organization. However, we observed no sex differences in the association between microstructure and thickness, suggesting that the role of factors such as axon density and/or myelination in determining CC size is generally equivalent between sexes. Finally, we found that CC length was negatively associated with nonverbal ability among females.
Asunto(s)
Desarrollo Infantil/fisiología , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/crecimiento & desarrollo , Imagen de Difusión Tensora/métodos , Caracteres Sexuales , Preescolar , Femenino , Humanos , Lactante , Estudios Longitudinales , Masculino , Imagen Multimodal/métodosRESUMEN
Sorting nexin 27 (SNX27) influences the composition of the cellular membrane via regulation of selective endosomal recycling. Molecular analysis indicates that SNX27 regulates numerous cellular processes through promiscuous interactions with its receptor cargos. SNX27 deficient (Snx27 -/- ) mice exhibit reduced embryonic survival, marked postnatal growth restriction and lethality. Haploinsufficient mice (Snx27 +/- ) show a less severe phenotype, with deficits in learning, memory, synaptic transmission and neuronal plasticity. One family previously reported with a homozygous SNX27 frameshift variant (c.515_516del;p.His172Argfs*6), exhibited infantile intractable myoclonic epilepsy, axial hypotonia, startle-like movements, cardiac septal defects, global developmental delay, failure to thrive, recurrent chest infections, persistent hypoxemia and early death secondary to respiratory failure. Here, we report two additional patients with compound heterozygous SNX27 variants, that are predicted to be damaging: (a) c.510C>G;p.Tyr170* and c.1295G>A;p.Cys432Tyr, and (b) c.782dupT;p.Leu262Profs*6 and c.989G>A;p.Arg330His. They exhibit global developmental delay, behavioral disturbance, epilepsy, some dysmorphic features and subcortical white matter abnormalities. In addition, possible connective tissue involvement was noted. Epilepsy, developmental delays and subcortical white matter abnormalities appear to be core features of SNX27-related disorders. We correlate the observed phenotype with available in vitro, in vivo and proteomic data and suggest additional possible molecular mediators of SNX27-related pathology.
Asunto(s)
Discapacidades del Desarrollo/genética , Convulsiones/genética , Nexinas de Clasificación/genética , Animales , Encéfalo/patología , Encefalopatías/genética , Encefalopatías/patología , Discapacidades del Desarrollo/patología , Discapacidades del Desarrollo/fisiopatología , Endosomas/genética , Endosomas/patología , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/patología , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Proteómica , Convulsiones/patologíaRESUMEN
Silent cerebral infarcts (SCIs) are associated with cognitive impairment in sickle cell anemia (SCA). SCI risk factors include low hemoglobin and elevated systolic blood pressure; however, mechanisms underlying their development are unclear. Using the largest prospective study evaluating SCIs in pediatric SCA, we identified brain regions with increased SCI density. We tested the hypothesis that infarct density is greatest within regions in which cerebral blood flow is lowest, further restricting cerebral oxygen delivery in the setting of chronic anemia. Neuroradiology and neurology committees reached a consensus of SCIs in 286 children in the Silent Infarct Transfusion (SIT) Trial. Each infarct was outlined and coregistered to a brain atlas to create an infarct density map. To evaluate cerebral blood flow as a function of infarct density, pseudocontinuous arterial spin labeling was performed in an independent pediatric SCA cohort. Blood flow maps were aligned to the SIT Trial infarct density map. Mean blood flow within low, moderate, and high infarct density regions from the SIT Trial were compared. Logistic regression evaluated clinical and imaging predictors of overt stroke at 3-year follow-up. The SIT Trial infarct density map revealed increased SCI density in the deep white matter of the frontal and parietal lobes. A relatively small region, measuring 5.6% of brain volume, encompassed SCIs from 90% of children. Cerebral blood flow was lowest in the region of highest infarct density (P < .001). Baseline infarct volume and reticulocyte count predicted overt stroke. In pediatric SCA, SCIs are symmetrically located in the deep white matter where minimum cerebral blood flow occurs.
Asunto(s)
Anemia de Células Falciformes/complicaciones , Encéfalo/patología , Infarto Cerebral/diagnóstico , Infarto Cerebral/etiología , Circulación Cerebrovascular , Adolescente , Encéfalo/irrigación sanguínea , Niño , Preescolar , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Estudios Prospectivos , Factores de RiesgoRESUMEN
Blood transfusions are the mainstay of stroke prevention in pediatric sickle cell anemia (SCA), but the physiology conferring this benefit is unclear. Cerebral blood flow (CBF) and oxygen extraction fraction (OEF) are elevated in SCA, likely compensating for reduced arterial oxygen content (CaO2). We hypothesized that exchange transfusions would decrease CBF and OEF by increasing CaO2, thereby relieving cerebral oxygen metabolic stress. Twenty-one children with SCA receiving chronic transfusion therapy (CTT) underwent magnetic resonance imaging before and after exchange transfusions. Arterial spin labeling and asymmetric spin echo sequences measured CBF and OEF, respectively, which were compared pre- and posttransfusion. Volumes of tissue with OEF above successive thresholds (36%, 38%, and 40%), as a metric of regional metabolic stress, were compared pre- and posttransfusion. Transfusions increased hemoglobin (Hb; from 9.1 to 10.3 g/dL; P < .001) and decreased Hb S (from 39.7% to 24.3%; P < .001). Transfusions reduced CBF (from 88 to 82.4 mL/100 g per minute; P = .004) and OEF (from 34.4% to 31.2%; P < .001). At all thresholds, transfusions reduced the volume of peak OEF found in the deep white matter, a location at high infarct risk in SCA (P < .001). Reduction of elevated CBF and OEF, both globally and regionally, suggests that CTT mitigates infarct risk in pediatric SCA by relieving cerebral metabolic stress at patient- and tissue-specific levels.
Asunto(s)
Anemia de Células Falciformes , Circulación Cerebrovascular , Transfusión de Eritrocitos , Angiografía por Resonancia Magnética , Oxígeno/sangre , Adolescente , Anemia de Células Falciformes/sangre , Anemia de Células Falciformes/diagnóstico por imagen , Anemia de Células Falciformes/fisiopatología , Anemia de Células Falciformes/terapia , Velocidad del Flujo Sanguíneo , Niño , Preescolar , Femenino , Humanos , MasculinoRESUMEN
BACKGROUND: Newborns with hypoxic-ischemic encephalopathy (HIE) may exhibit abnormalities on placental histology. In this phase II clinical trial ancillary study, we hypothesized that placental abnormalities correlate with MRI brain injury and with response to treatment. METHODS: Fifty newborns with moderate/severe encephalopathy who received hypothermia were enrolled in a double-blind, placebo-controlled trial of erythropoietin for HIE. A study pathologist reviewed all available clinical pathology reports to determine the presence of chronic abnormalities and acute chorioamnionitis. Neonatal brain MRIs were scored using a validated HIE scoring system. RESULTS: Placental abnormalities in 19 of the 35 (54%) patients with available pathology reports included chronic changes (N = 13), acute chorioamnionitis (N = 9), or both (N = 3). MRI subcortical brain injury was less common in infants with a placental abnormality (26 vs. 69%, P = 0.02). Erythropoietin treatment was associated with a lower global brain injury score (median 2.0 vs. 11.5, P = 0.003) and lower rate of subcortical brain injury (33 vs. 90%, P = 0.01) among patients with no chronic placental abnormality but not in patients whose placentas harbored a chronic abnormality. CONCLUSION: Erythropoietin treatment was associated with less brain injury only in patients whose placentas exhibited no chronic histologic changes. Placentas may provide clues to treatment response in HIE.
Asunto(s)
Encefalopatías/tratamiento farmacológico , Encéfalo/diagnóstico por imagen , Encéfalo/crecimiento & desarrollo , Eritropoyetina/uso terapéutico , Hipoxia-Isquemia Encefálica/patología , Placenta/patología , Encéfalo/patología , Método Doble Ciego , Femenino , Humanos , Hipotermia Inducida , Recién Nacido , Imagen por Resonancia Magnética , Masculino , EmbarazoRESUMEN
Stroke and cognitive decline are hallmarks of sickle cell disease (SCD). The natural history of SCD predicts progressive loss of 1 IQ point per year attributable to disease-related pathology. Hematopoietic cell transplantation (HCT) is curative by reverting to donor-derived erythropoiesis, but evidence that HCT can positively influence disease-induced cognitive decline is lacking. The Sickle Cell Unrelated Transplant Trial prospectively evaluated cognition and brain magnetic resonance imaging (MRI) findings at 2 years after reduced-intensity conditioning followed by unrelated donor HCT. Thirteen study participants completed pre-HCT and post-HCT assessments of intelligence. The mean age of participants was 12.5 ± 3.3 years (range, 6.7 to 17.4 years). Eleven of the 13 recipients completed imaging studies at baseline and post-HCT. Seven had overt stroke pre-HCT, and 1 had an elevated transcranial Doppler velocity with abnormal MRI. The mean Full-Scale IQ was stable: 90.9 ± 13 at baseline and 91.2 ± 13 post-HCT. The mean Performance IQ was 89.9 ± 13 at baseline versus 90.9 ± 13 post-HCT, and mean Verbal IQ was 93.4 ± 13 at baseline versus 93.2 ± 13 post-HCT, respectively. Six recipients had stable MRI; 2 showed resolution of all areas of infarction. Three had additional infarcts post-HCT noted at the 2-year time point. This is the first report describing stabilization of IQ and central nervous system outcomes after unrelated donor HCT despite previous central nervous system morbidity and post-HCT posterior reversible encephalopathy syndrome. These preliminary results post-HCT suggest that HCT may stabilize the cognitive decline of SCD and should continue to be followed over the long term.