Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Mol Cell ; 83(7): 1016-1021, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37028411

RESUMEN

As phase separation is found in an increasing variety of biological contexts, additional challenges have arisen in understanding the underlying principles of condensate formation and function. We spoke with researchers across disciplines about their views on the ever-changing landscape of biomolecular condensates.


Asunto(s)
Condensados Biomoleculares , Investigadores , Humanos , Biología
2.
Genes Dev ; 36(13-14): 765-769, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-36342833

RESUMEN

The nucleolus is best known for housing the highly ordered assembly line that produces ribosomal subunits. The >100 ribosome assembly factors in the nucleolus are thought to cycle between two states: an operative state (when integrated into subunit assembly intermediates) and a latent state (upon release from intermediates). Although it has become commonplace to refer to the nucleolus as "being a multilayered condensate," and this may be accurate for latent factors, there is little reason to think that such assertions pertain to the operative state of assembly factors.


Asunto(s)
Nucléolo Celular , ARN Ribosómico
3.
Genes Dev ; 35(7-8): 483-488, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33664058

RESUMEN

It is unknown how ribosomal gene (rDNA) arrays from multiple chromosomal nucleolar organizers (NORs) partition within human nucleoli. Exploration of this paradigm for chromosomal organization is complicated by the shared DNA sequence composition of five NOR-bearing acrocentric chromosome p-arms. Here, we devise a methodology for genetic manipulation of individual NORs. Efficient "scarless" genome editing of rDNA repeats is achieved on "poised" human NORs held within monochromosomal cell hybrids. Subsequent transfer to human cells introduces "active" NORs yielding readily discernible functional customized ribosomes. We reveal that ribosome biogenesis occurs entirely within constrained territories, tethered to individual NORs inside a larger nucleolus.


Asunto(s)
Nucléolo Celular/metabolismo , Región Organizadora del Nucléolo/genética , Región Organizadora del Nucléolo/metabolismo , Ribosomas/metabolismo , Secuencia de Bases , Línea Celular , Nucléolo Celular/genética , Cromosomas/metabolismo , Edición Génica , Humanos , Ribosomas/genética
4.
Genes Dev ; 33(5-6): 276-281, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30804226

RESUMEN

Formation of individualized sister chromatids is essential for their accurate segregation. In budding yeast, while most of the genome segregates at the metaphase to anaphase transition, resolution of the ribosomal DNA (rDNA) repeats is delayed. The timing and mechanism in human cells is unknown. Here we show that resolution of human rDNA occurs in anaphase after the bulk of the genome, dependent on tankyrase 1, condensin II, and topoisomerase IIα. Defective resolution leads to rDNA bridges, rDNA damage, and aneuploidy of an rDNA-containing acrocentric chromosome. Thus, temporal regulation of rDNA segregation is conserved between yeast and man and is essential for genome integrity.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Anafase/fisiología , ADN-Topoisomerasas de Tipo II/metabolismo , ADN Ribosómico/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Tanquirasas/metabolismo , Aneuploidia , Segregación Cromosómica , Daño del ADN/genética , ADN Ribosómico/genética , Humanos , Saccharomyces cerevisiae/genética
5.
Genes Dev ; 33(23-24): 1688-1701, 2019 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-31727772

RESUMEN

Human nucleolar organizer regions (NORs), containing ribosomal gene (rDNA) arrays, are located on the p-arms of acrocentric chromosomes (HSA13-15, 21, and 22). Absence of these p-arms from genome references has hampered research on nucleolar formation. Previously, we assembled a distal junction (DJ) DNA sequence contig that abuts rDNA arrays on their telomeric side, revealing that it is shared among the acrocentrics and impacts nucleolar organization. To facilitate inclusion into genome references, we describe sequencing the DJ from all acrocentrics, including three versions of HSA21, ∼3 Mb of novel sequence. This was achieved by exploiting monochromosomal somatic cell hybrids containing single human acrocentric chromosomes with NORs that retain functional potential. Analyses revealed remarkable DJ sequence and functional conservation among human acrocentrics. Exploring chimpanzee acrocentrics, we show that "DJ-like" sequences and abutting rDNA arrays are inverted as a unit in comparison to humans. Thus, rDNA arrays and linked DJs represent a conserved functional locus. We provide direct evidence for exchanges between heterologous human acrocentric p-arms, and uncover extensive structural variation between chromosomes and among individuals. These findings lead us to revaluate the molecular definition of NORs, identify novel genomic structural variation, and provide a rationale for the distinctive chromosomal organization of NORs.


Asunto(s)
Cromosomas/química , Cromosomas/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Región Organizadora del Nucléolo/química , Región Organizadora del Nucléolo/genética , Animales , Secuencia de Bases , Línea Celular , Secuencia Conservada/genética , Estructuras Genéticas/genética , Variación Genética , Humanos , Células Híbridas , Ratones , Pan troglodytes/genética
6.
Annu Rev Genomics Hum Genet ; 24: 63-83, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36854315

RESUMEN

The p-arms of the five human acrocentric chromosomes bear nucleolar organizer regions (NORs) comprising ribosomal gene (rDNA) repeats that are organized in a homogeneous tandem array and transcribed in a telomere-to-centromere direction. Precursor ribosomal RNA transcripts are processed and assembled into ribosomal subunits, the nucleolus being the physical manifestation of this process. I review current understanding of nucleolar chromosome biology and describe current exploration into a role for the NOR chromosomal context. Full DNA sequences for acrocentric p-arms are now emerging, aided by the current revolution in long-read sequencing and genome assembly. Acrocentric p-arms vary from 10.1 to 16.7 Mb, accounting for ∼2.2% of the genome. Bordering rDNA arrays, distal junctions, and proximal junctions are shared among the p-arms, with distal junctions showing evidence of functionality. The remaining p-arm sequences comprise multiple satellite DNA classes and segmental duplications that facilitate recombination between heterologous chromosomes, which is likely also involved in Robertsonian translocations.


Asunto(s)
Cromosomas Humanos , Región Organizadora del Nucléolo , Humanos , Cromosomas Humanos/genética , Cromosomas , Nucléolo Celular/genética , Centrómero , ADN Ribosómico/genética
7.
Nature ; 617(7960): 256-258, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37165235

Asunto(s)
Genoma , Genómica , Humanos
8.
Genes Dev ; 30(14): 1598-610, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27474438

RESUMEN

Nucleoli form around tandem arrays of a ribosomal gene repeat, termed nucleolar organizer regions (NORs). During metaphase, active NORs adopt a characteristic undercondensed morphology. Recent evidence indicates that the HMG-box-containing DNA-binding protein UBF (upstream binding factor) is directly responsible for this morphology and provides a mitotic bookmark to ensure rapid nucleolar formation beginning in telophase in human cells. This is likely to be a widely employed strategy, as UBF is present throughout metazoans. In higher eukaryotes, NORs are typically located within regions of chromosomes that form perinucleolar heterochromatin during interphase. Typically, the genomic architecture of NORs and the chromosomal regions within which they lie is very poorly described, yet recent evidence points to a role for context in their function. In Arabidopsis, NOR silencing appears to be controlled by sequences outside the rDNA (ribosomal DNA) array. Translocations reveal a role for context in the expression of the NOR on the X chromosome in Drosophila Recent work has begun on characterizing the genomic architecture of human NORs. A role for distal sequences located in perinucleolar heterochromatin has been inferred, as they exhibit a complex transcriptionally active chromatin structure. Links between rDNA genomic stability and aging in Saccharomyces cerevisiae are now well established, and indications are emerging that this is important in aging and replicative senescence in higher eukaryotes. This, combined with the fact that rDNA arrays are recombinational hot spots in cancer cells, has focused attention on DNA damage responses in NORs. The introduction of DNA double-strand breaks into rDNA arrays leads to a dramatic reorganization of nucleolar structure. Damaged rDNA repeats move from the nucleolar interior to form caps at the nucleolar periphery, presumably to facilitate repair, suggesting that the chromosomal context of human NORs contributes to their genomic stability. The inclusion of NORs and their surrounding chromosomal environments in future genome drafts now becomes a priority.


Asunto(s)
Región Organizadora del Nucléolo/fisiología , Envejecimiento , Animales , Cromosomas/metabolismo , Roturas del ADN de Doble Cadena , ADN Ribosómico/metabolismo , Genoma Humano/genética , Inestabilidad Genómica , Humanos , Región Organizadora del Nucléolo/genética
9.
Proc Natl Acad Sci U S A ; 117(19): 10368-10377, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32332163

RESUMEN

Nucleoli, the sites of ribosome biogenesis and the largest structures in human nuclei, form around nucleolar organizer regions (NORs) comprising ribosomal DNA (rDNA) arrays. NORs are located on the p-arms of the five human acrocentric chromosomes. Defining the rules of engagement between these p-arms and nucleoli takes on added significance as describing the three-dimensional organization of the human genome represents a major research goal. Here we used fluorescent in situ hybridization (FISH) and immuno-FISH on metaphase chromosomes from karyotypically normal primary and hTERT-immortalized human cell lines to catalog NORs in terms of their relative rDNA content and activity status. We demonstrate that a proportion of acrocentric p-arms in cell lines and from normal human donors have no detectable rDNA. Surprisingly, we found that all NORs with detectable rDNA are active, as defined by upstream binding factor loading. We determined the nucleolar association status of all NORs during interphase, and found that nucleolar association of acrocentric p-arms can occur independently of rDNA content, suggesting that sequences elsewhere on these chromosome arms drive nucleolar association. In established cancer lines, we characterize a variety of chromosomal rearrangements involving acrocentric p-arms and observe silent, rDNA-containing NORs that are dissociated from nucleoli. In conclusion, our findings indicate that within human nuclei, positioning of all 10 acrocentric chromosomes is dictated by nucleolar association. Furthermore, these nucleolar associations are buffered against interindividual variation in the distribution of rDNA.


Asunto(s)
ADN Ribosómico/genética , Región Organizadora del Nucléolo/metabolismo , Región Organizadora del Nucléolo/fisiología , Línea Celular , Nucléolo Celular/metabolismo , Núcleo Celular/metabolismo , Centrómero/fisiología , Cromosomas Humanos/metabolismo , ADN Ribosómico/metabolismo , Genoma Humano/genética , Genoma Humano/fisiología , Humanos , Hibridación Fluorescente in Situ/métodos , Región Organizadora del Nucléolo/genética , Ribosomas/metabolismo
10.
Genes Dev ; 29(11): 1151-63, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-26019174

RESUMEN

DNA double-strand breaks (DSBs) are repaired by two main pathways: nonhomologous end-joining and homologous recombination (HR). Repair pathway choice is thought to be determined by cell cycle timing and chromatin context. Nucleoli, prominent nuclear subdomains and sites of ribosome biogenesis, form around nucleolar organizer regions (NORs) that contain rDNA arrays located on human acrocentric chromosome p-arms. Actively transcribed rDNA repeats are positioned within the interior of the nucleolus, whereas sequences proximal and distal to NORs are packaged as heterochromatin located at the nucleolar periphery. NORs provide an opportunity to investigate the DSB response at highly transcribed, repetitive, and essential loci. Targeted introduction of DSBs into rDNA, but not abutting sequences, results in ATM-dependent inhibition of their transcription by RNA polymerase I. This is coupled with movement of rDNA from the nucleolar interior to anchoring points at the periphery. Reorganization renders rDNA accessible to repair factors normally excluded from nucleoli. Importantly, DSBs within rDNA recruit the HR machinery throughout the cell cycle. Additionally, unscheduled DNA synthesis, consistent with HR at damaged NORs, can be observed in G1 cells. These results suggest that HR can be templated in cis and suggest a role for chromosomal context in the maintenance of NOR genomic stability.


Asunto(s)
Ciclo Celular , Nucléolo Celular/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Línea Celular , ADN Polimerasa I/metabolismo , ADN Ribosómico/genética , Regulación de la Expresión Génica , Humanos
11.
Trends Genet ; 35(10): 743-753, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31353047

RESUMEN

Nucleoli, the sites of ribosome biogenesis, form around ribosomal gene (rDNA) arrays termed nucleolar organiser regions (NORs). These are the most transcriptionally active regions of the human genome and specialised responses have evolved to ensure their genomic stability. This review focuses on nucleolar responses to DNA double-strand breaks (DSBs) introduced into rDNA arrays using sequence-specific endonucleases, including CRISPR/Cas9. Repair of rDNA DSBs is predominantly carried out by the homology-directed repair (HDR) pathway that is facilitated by inhibition of transcription by RNA polymerase-I (Pol-I) and ensuing dramatic nucleolar reorganisation. Additionally, we review evidence that nucleoli can sense and respond to DSBs elsewhere in the genome.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN Ribosómico/genética , Inestabilidad Genómica , Nucléolo Celular , ADN Polimerasa I/metabolismo , Reparación del ADN , Humanos , Región Organizadora del Nucléolo/metabolismo , Transcripción Genética
12.
Genes Dev ; 28(3): 220-30, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24449107

RESUMEN

Human cell nuclei are functionally organized into structurally stable yet dynamic bodies whose cell cycle inheritance is poorly understood. Here, we investigate the biogenesis and propagation of nucleoli, sites of ribosome biogenesis and key regulators of cellular growth. Nucleolar and cell cycles are intimately connected. Nucleoli disappear during mitosis, reforming around prominent uncharacterized chromosomal features, nucleolar organizer regions (NORs). By examining the effects of UBF depletion on both endogenous NORs and synthetic pseudo-NORs, we reveal its essential role in maintaining competency and establishing a bookmark on mitotic NORs. Furthermore, we demonstrate that neo-NORs, UBF-binding site arrays coupled with rDNA transcription units, direct the de novo biogenesis of functional compartmentalized neonucleoli irrespective of their site of chromosomal integration. For the first time, we establish the sequence requirements for nucleolar biogenesis and provide proof that this is a staged process where UBF-dependent mitotic bookmarking precedes function-dependent nucleolar assembly.


Asunto(s)
Células Artificiales/metabolismo , División Celular/fisiología , Nucléolo Celular/metabolismo , Células 3T3 , Animales , Humanos , Ratones , Mitosis/fisiología , Región Organizadora del Nucléolo/genética , Región Organizadora del Nucléolo/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Polirribosomas/metabolismo , ARN Ribosómico/metabolismo
13.
Genome Res ; 23(12): 2003-12, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23990606

RESUMEN

The short arms of the five acrocentric human chromosomes harbor sequences that direct the assembly and function of the nucleolus, one of the key functional domains of the nucleus, yet they are absent from the current human genome assembly. Here we describe the genomic architecture of these human nucleolar organizers. Sequences distal and proximal to ribosomal gene arrays are conserved among the acrocentric chromosomes, suggesting they are sites of frequent recombination. Although previously believed to be heterochromatic, characterization of these two flanking regions reveals that they share a complex genomic architecture similar to other euchromatic regions of the genome, but they have distinct genomic characteristics. Proximal sequences are almost entirely segmentally duplicated, similar to the regions bordering centromeres. In contrast, the distal sequence is predominantly unique to the acrocentric short arms and is dominated by a very large inverted repeat. We show that the distal element is localized to the periphery of the nucleolus, where it appears to anchor the ribosomal gene repeats. This, combined with its complex chromatin structure and transcriptional activity, suggests that this region is involved in nucleolar organization. Our results provide a platform for investigating the role of NORs in nucleolar formation and function, and open the door for determining the role of these regions in the well-known empirical association of nucleoli with pathology.


Asunto(s)
Nucléolo Celular/genética , Cromatina/genética , ADN Ribosómico/genética , Región Organizadora del Nucléolo/genética , Línea Celular Tumoral , Centrómero , Cromosomas Humanos , Genoma Humano , Células HeLa , Humanos , Datos de Secuencia Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Ribosomas/genética , Duplicaciones Segmentarias en el Genoma , Análisis de Secuencia de ADN , Transfección
14.
Nucleic Acids Res ; 41(22): 10135-49, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24021628

RESUMEN

Ribosome biogenesis is a major metabolic effort for growing cells. In Saccharomyces cerevisiae, Hmo1, an abundant high-mobility group box protein (HMGB) binds to the coding region of the RNA polymerase I transcribed ribosomal RNAs genes and the promoters of ∼70% of ribosomal protein genes. In this study, we have demonstrated the functional conservation of eukaryotic HMGB proteins involved in ribosomal DNA (rDNA) transcription. We have shown that when expressed in budding yeast, human UBF1 and a newly identified Sp-Hmo1 (Schizosaccharomyces pombe) localize to the nucleolus and suppress growth defect of the RNA polymerase I mutant rpa49-Δ. Owing to the multiple functions of both proteins, Hmo1 and UBF1 are not fully interchangeable. By deletion and domains swapping in Hmo1, we identified essential domains that stimulate rDNA transcription but are not fully required for stimulation of ribosomal protein genes expression. Hmo1 is organized in four functional domains: a dimerization module, a canonical HMGB motif followed by a conserved domain and a C-terminal nucleolar localization signal. We propose that Hmo1 has acquired species-specific functions and shares with UBF1 and Sp-Hmo1 an ancestral function to stimulate rDNA transcription.


Asunto(s)
ADN Ribosómico/metabolismo , Proteínas HMGB/química , Proteínas HMGB/metabolismo , Proteínas del Grupo de Alta Movilidad/química , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Nucléolo Celular/metabolismo , Secuencia Conservada , Proteínas HMGB/genética , Proteínas del Grupo de Alta Movilidad/genética , Humanos , Proteínas del Complejo de Iniciación de Transcripción Pol1/química , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Estructura Terciaria de Proteína , ARN Polimerasa I/metabolismo , Proteínas Ribosómicas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Relación Estructura-Actividad
15.
PLoS Genet ; 8(8): e1002892, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22916032

RESUMEN

The fundamental process of ribosome biogenesis requires hundreds of factors and takes place in the nucleolus. This process has been most thoroughly characterized in baker's yeast and is generally well conserved from yeast to humans. However, some of the required proteins in yeast are not found in humans, raising the possibility that they have been replaced by functional analogs. Our objective was to identify non-conserved interaction partners for the human ribosome biogenesis factor, hUTP4/Cirhin, since the R565W mutation in the C-terminus of hUTP4/Cirhin was reported to cause North American Indian childhood cirrhosis (NAIC). By screening a yeast two-hybrid cDNA library derived from human liver, and through affinity purification followed by mass spectrometry, we identified an uncharacterized nucleolar protein, NOL11, as an interaction partner for hUTP4/Cirhin. Bioinformatic analysis revealed that NOL11 is conserved throughout metazoans and their immediate ancestors but is not found in any other phylogenetic groups. Co-immunoprecipitation experiments show that NOL11 is a component of the human ribosomal small subunit (SSU) processome. siRNA knockdown of NOL11 revealed that it is involved in the cleavage steps required to generate the mature 18S rRNA and is required for optimal rDNA transcription. Furthermore, abnormal nucleolar morphology results from the absence of NOL11. Finally, yeast two-hybrid analysis shows that NOL11 interacts with the C-terminus of hUTP4/Cirhin and that the R565W mutation partially disrupts this interaction. We have therefore identified NOL11 as a novel protein required for the early stages of ribosome biogenesis in humans. Our results further implicate a role for NOL11 in the pathogenesis of NAIC.


Asunto(s)
Indígenas Norteamericanos/genética , Cirrosis Hepática/genética , Proteínas Nucleares/genética , ARN Ribosómico 18S/genética , Ribonucleoproteínas/genética , Ribosomas/genética , Sitios de Unión , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Niño , Secuencia Conservada , Biblioteca de Genes , Células HeLa , Humanos , Inmunoprecipitación , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Mutación , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Precursores del ARN , ARN Ribosómico 18S/metabolismo , ARN Interferente Pequeño/genética , Ribonucleoproteínas/metabolismo , Ribosomas/metabolismo , Ribosomas/patología , Técnicas del Sistema de Dos Híbridos
16.
Elife ; 122024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39388244

RESUMEN

PML, a multifunctional protein, is crucial for forming PML-nuclear bodies involved in stress responses. Under specific conditions, PML associates with nucleolar caps formed after RNA polymerase I (RNAPI) inhibition, leading to PML-nucleolar associations (PNAs). This study investigates PNAs-inducing stimuli by exposing cells to various genotoxic stresses. We found that the most potent inducers of PNAs introduced topological stress and inhibited RNAPI. Doxorubicin, the most effective compound, induced double-strand breaks (DSBs) in the rDNA locus. PNAs co-localized with damaged rDNA, segregating it from active nucleoli. Cleaving the rDNA locus with I-PpoI confirmed rDNA damage as a genuine stimulus for PNAs. Inhibition of ATM, ATR kinases, and RAD51 reduced I-PpoI-induced PNAs, highlighting the importance of ATM/ATR-dependent nucleolar cap formation and homologous recombination (HR) in their triggering. I-PpoI-induced PNAs co-localized with rDNA DSBs positive for RPA32-pS33 but deficient in RAD51, indicating resected DNA unable to complete HR repair. Our findings suggest that PNAs form in response to persistent rDNA damage within the nucleolar cap, highlighting the interplay between PML/PNAs and rDNA alterations due to topological stress, RNAPI inhibition, and rDNA DSBs destined for HR. Cells with persistent PNAs undergo senescence, suggesting PNAs help avoid rDNA instability, with implications for tumorigenesis and aging.


Asunto(s)
Nucléolo Celular , ADN Ribosómico , Proteína de la Leucemia Promielocítica , Humanos , Proteína de la Leucemia Promielocítica/metabolismo , Proteína de la Leucemia Promielocítica/genética , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Nucléolo Celular/metabolismo , Daño del ADN , Roturas del ADN de Doble Cadena , ARN Polimerasa I/metabolismo , ARN Polimerasa I/genética
17.
Elife ; 132024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38240312

RESUMEN

Out of the several hundred copies of rRNA genes arranged in the nucleolar organizing regions (NOR) of the five human acrocentric chromosomes, ~50% remain transcriptionally inactive. NOR-associated sequences and epigenetic modifications contribute to the differential expression of rRNAs. However, the mechanism(s) controlling the dosage of active versus inactive rRNA genes within each NOR in mammals is yet to be determined. We have discovered a family of ncRNAs, SNULs (Single NUcleolus Localized RNA), which form constrained sub-nucleolar territories on individual NORs and influence rRNA expression. Individual members of the SNULs monoallelically associate with specific NOR-containing chromosomes. SNULs share sequence similarity to pre-rRNA and localize in the sub-nucleolar compartment with pre-rRNA. Finally, SNULs control rRNA expression by influencing pre-rRNA sorting to the DFC compartment and pre-rRNA processing. Our study discovered a novel class of ncRNAs influencing rRNA expression by forming constrained nucleolar territories on individual NORs.


Asunto(s)
Región Organizadora del Nucléolo , Precursores del ARN , Humanos , Animales , Región Organizadora del Nucléolo/genética , Región Organizadora del Nucléolo/metabolismo , Precursores del ARN/genética , Precursores del ARN/metabolismo , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Cromosomas Humanos/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Mamíferos/genética
18.
J Struct Biol ; 173(2): 213-8, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21130882

RESUMEN

In mammalian cells, transcriptionally active ribosomal genes are replicated in the early S phase, and the silent ribosomal genes in the late S phase, though mechanisms of this timing remain unknown. UBF (Upstream Binding Factor), a DNA binding protein and component of the pol I transcription machinery, is considered to be responsible for the loose chromatin structure of the active rDNA. Here we question whether such structure alone can ensure early replication of DNA. We investigate this problem on the model of pseudo-NORs, the tandem arrays of heterologous DNA sequence with high affinity for UBF, introduced into human chromosomes. Such arrays are not transcribed, yet efficiently bind UBF and mimic the chromatin structure of active rDNA. In our study, a human derived stable cell line containing one pseudo-NOR on the chromosome 10 was transiently transfected with UBF-GFP and PCNA-RFP, which allowed us to observe in vivo the growth of pseudo-NORs resulted from their replication. We found that replication of pseudo-NORs is not restricted to the early S phase, but continues in the late S phase at a significant level. These results were confirmed in the experiments with incorporation of thymidin analog EdU and BrdU ChIP assay. Similar results were obtained with another cell line containing pseudo-NOR on the chromosome 7. Our data indicate that the specific loose structure of chromatin, produced by the architect protein UBF, is not sufficient for the early replication.


Asunto(s)
Región Organizadora del Nucléolo/metabolismo , Línea Celular Tumoral , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Humanos , Inmunohistoquímica , Región Organizadora del Nucléolo/genética , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Fase S/genética , Fase S/fisiología
19.
Biochim Biophys Acta ; 1783(11): 2116-23, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18687368

RESUMEN

Nucleolar organiser regions (NORs) are comprised of tandem arrays of ribosomal gene (rDNA) repeats that are transcribed by RNA polymerase I (Pol I), ultimately resulting in formation of a nucleolus. Upstream binding factor (UBF), a DNA binding protein and component of the Pol I transcription machinery, binds extensively across the rDNA repeat in vivo. Pseudo-NORs are tandem arrays of a heterologous DNA sequence with high affinity for UBF introduced into human chromosomes. In this review we describe how analysis of pseudo-NORs has provided important insights into nucleolar formation. Pseudo-NORs mimic endogenous NORs in a number of important respects. On metaphase chromosomes both appear as secondary constrictions comprised of undercondensed chromatin. The transcriptional silence of pseudo-NORs provides a platform for studying the transcription independent recruitment of factors required for nucleolar formation by this specialised chromatin structure. During interphase, pseudo-NORs appear as distinct and novel sub-nuclear bodies. Analysis of these bodies and comparison to their endogenous counterpart has provided insights into nucleolar formation and structure.


Asunto(s)
Nucléolo Celular/metabolismo , ADN Ribosómico/metabolismo , Región Organizadora del Nucléolo/metabolismo , Ciclo Celular/fisiología , Nucléolo Celular/ultraestructura , Cromatina/genética , Cromatina/metabolismo , Cromosomas Humanos , ADN Ribosómico/genética , Humanos , Región Organizadora del Nucléolo/ultraestructura , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , ARN Polimerasa I/metabolismo , Transcripción Genética
20.
Mol Cell Biol ; 22(2): 657-68, 2002 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11756560

RESUMEN

The HMG box containing protein UBF binds to the promoter of vertebrate ribosomal repeats and is required for their transcription by RNA polymerase I in vitro. UBF can also bind in vitro to a variety of sequences found across the intergenic spacer in Xenopus and mammalian ribosomal DNA (rDNA) repeats. The high abundance of UBF, its colocalization with rDNA in vivo, and its DNA binding characteristics, suggest that it plays a more generalized structural role over the rDNA repeat. Until now this view has not been supported by any in vivo data. Here, we utilize chromatin immunoprecipitation from a highly enriched nucleolar chromatin fraction to show for the first time that UBF binding in vivo is not restricted to known regulatory sequences but extends across the entire intergenic spacer and transcribed region of Xenopus, human, and mouse rDNA repeats. These results are consistent with a structural role for UBF at active nucleolar organizer regions in addition to its recognized role in stable transcription complex formation at the promoter.


Asunto(s)
ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas del Complejo de Iniciación de Transcripción Pol1 , Factores de Transcripción/metabolismo , Animales , Sitios de Unión/genética , Línea Celular , Genes Reguladores , Células HeLa , Humanos , Hibridación Fluorescente in Situ , Sustancias Macromoleculares , Ratones , Región Organizadora del Nucléolo/genética , Región Organizadora del Nucléolo/metabolismo , Regiones Promotoras Genéticas , ARN Polimerasa I/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA