RESUMEN
The adult sex ratio (ASR) is important within ecology due to its predicted effects on behaviour, demography and evolution, but research examining the causes and consequences of ASR bias have lagged behind the studies of sex ratios at earlier life stages. Although ungulate ASR is relatively well-studied, exceptions to the usual female-biased ASR challenge our understanding of the underlying drivers of biased ASR and provide an opportunity to better understand its consequences. Some feral ungulate populations, including multiple horse populations, exhibit unusually male-biased ASR. For example, research suggests that the feral horse Equus ferus caballus population on Sable Island, Nova Scotia, Canada may exhibit a male-biased ASR. Such exceptions to the rule provide a valuable opportunity to reveal the contributions of environmental context and trait differences to ASR bias. We aimed to test for bias in Sable Island horse ASR, identify the demographic drivers of bias, and explore its demographic and social consequences. To do this, we used life history, movement and group membership information for hundreds of horses followed through a long-term individual-based study between 2007 and 2018. Sable Island horse ASR is male biased and this skew has increased over time, reaching 62% male in 2018. Our life table response experiment suggested that ASR skew was driven predominantly by male-biased adult survival. Further analyses pointed to sex-biased survival being driven by reduced female survival post-reproduction. Male-biased ASR was associated with reduced harem sizes, an increase in the number of social groups on the island, and reduced reproduction in young females. Our results support the idea that male-biased ASR in feral ungulate populations may be caused by a combination of high population density and high reproductive output. We suggest that female-biased mortality may be caused by females continuing to reproduce at high density, and thus being more susceptible to resource shortages. Thus, our results highlight the strong context dependence of ASR. Furthermore, our work indicates the potential for ASR to substantially alter a population's social organisation. Such changes in social structure could have knock-on consequences for demography by altering the formation/stability of social relationships, or competition for matings.
Asunto(s)
Reproducción , Razón de Masculinidad , Animales , Femenino , Caballos , Islas , Masculino , Nueva Escocia , Densidad de PoblaciónRESUMEN
In wild and domestic animals, gastrointestinal parasites can have significant impacts on host development, condition, health, reproduction and longevity. Improving our understanding of the causes and consequences of individual-level variation in parasite load is therefore of prime interest. Here we investigated the relationship between strongyle fecal egg count (FEC) and body condition in a unique, naturalized population of horses that has never been exposed to anthelmintic drugs (Sable Island, Nova Scotia, Canada). We first quantified variation in FEC and condition for 447 individuals according to intrinsic (sex, age, reproductive status, social status) and extrinsic (group size, location, local density) variables. We then quantified the repeatability of measurements obtained over a field season and tested for covariance between FEC and condition. FECs were high relative to other horse populations (mean eggs per gram ± SD = 1543·28 ± 209·94). FECs generally decreased with age, were higher in lactating vs non-lactating females, and unexpectedly lower in males in some part of the island. FECs and condition were both spatially structured, with patterns depending on age, sex and reproductive status. FECs and condition were both repeatable. Most notably, FECs and condition were negatively correlated, especially in adult females.
Asunto(s)
Enfermedades de los Caballos/parasitología , Caballos/parasitología , Interacciones Huésped-Parásitos , Infecciones Equinas por Strongyloidea/parasitología , Strongylus/aislamiento & purificación , Factores de Edad , Animales , Canadá , Heces/parasitología , Femenino , Masculino , Recuento de Huevos de Parásitos/veterinaria , Carga de Parásitos , Estaciones del Año , Factores Sexuales , Strongylus/fisiologíaRESUMEN
Gut microbiomes are widely hypothesised to influence host fitness and have been experimentally shown to affect host health and phenotypes under laboratory conditions. However, the extent to which they do so in free-living animal populations and the proximate mechanisms involved remain open questions. In this study, using long-term, individual-based life history and shallow shotgun metagenomic sequencing data (2394 fecal samples from 794 individuals collected between 2013-2019), we quantify relationships between gut microbiome variation and survival in a feral population of horses under natural food limitation (Sable Island, Canada), and test metagenome-derived predictions using short-chain fatty acid data. We report detailed evidence that variation in the gut microbiome is associated with a host fitness proxy in nature and outline hypotheses of pathogenesis and methanogenesis as key causal mechanisms which may underlie such patterns in feral horses, and perhaps, wild herbivores more generally.
Asunto(s)
Heces , Microbioma Gastrointestinal , Metano , Animales , Caballos/microbiología , Microbioma Gastrointestinal/genética , Heces/microbiología , Metano/metabolismo , Animales Salvajes/microbiología , Metagenoma , Ácidos Grasos Volátiles/metabolismo , Metagenómica/métodos , Masculino , Femenino , CanadáRESUMEN
Steroid-hormone concentrations from non-invasively obtained biomarkers, like hair, can provide a representation of circulating hormones diffused over relatively long time periods (e.g., weeks or months). The hormone cortisol is often associated with physiological or even psychological stress, while testosterone is strongly associated with male development and reproductive success. Increasingly, studies are using hormone levels derived from hair to make inferences among both domestic animals and wildlife. For horses, all previous hair hormone analysis has been done on companion or working animals. We evaluated the levels of hair cortisol (n = 153) and testosterone (n = 48) from 136 feral horses living on Sable Island, Canada that have been part of a long-term individual-based study since 2008. This population has been undisturbed and unmanaged for over 50 years, and exhibits the natural social organization for horses, harem defense polygyny. Hair samples were collected in mid to late summer and the segment analyzed corresponds with hair grown during, and following, the peak of the reproductive season. Social position was determined based on the male's role as either a dominant breeding Stallion (Stallion), a non-breeding subordinate male (tag), adult Bachelor (5 years old or older), or Immature male (2-4 years of age). While there was no difference in hair-cortisol concentration among any class of adult males (i.e., Stallion, tag, or Bachelor), Immature males had significantly lower hair cortisol concentrations than the other groups (p = 0.001). Hair testosterone levels among the four social positions were significantly higher among Stallions (p = 0.04). Hair testosterone concentration was also significantly related to the probability of a male being either a Bachelor or Stallion and was the only variable remaining in AICc model selection (p = 0.016, AICc = 32.3, Null AICc = 38.8). While not a significant relationship, Stallions had a negative correlation between hair cortisol concentrations and testosterone (R2 = -0.20, p = 0.383), and Bachelors, conversely, had a positive association (R2 = 0.43, p = 0.246). Our observations of hormone concentrations in relation to physiological, social, or reproductive parameters in this population suggest trends that are similar to what has been established using blood or other matrices.
RESUMEN
Cortisol is a glucocorticoid hormone produced during activation of the hypothalamic-pituitary-adrenal axis (HPA) in response to psychological or physiological demands. High amounts of circulating cortisol can be found in individuals experiencing energetically demanding physiological events, such as pregnancy, lactation, injury, or starvation, but, also, in individuals who may have less obvious HPA activation from social situations. The feral horse population on Sable Island (Nova Scotia, Canada) provides an opportunity to look at hair cortisol concentration (HCC) as a proxy for circulating cortisol concentration to better understand physiological correlates. The horse's complex social structure also allows us to look at how the population and group structure may influence HPA activation. Hair samples (n = 282) were analyzed from 113 females and 135 males. Females with dependent offspring (foals) had higher HCC than those females without dependent offspring (p = 0.005). Horses in poor body condition were also more likely to have higher HCC (females: p < 0.001, males: p = 0.028); females had greater variation in the body condition index (BCI), which also correlated with foal production. In general, the top-ranked models describing female cortisol levels included age, BCI, presence of a foal, as well as social measures such as harem size and the number of bachelors in the vicinity. The top model describing male cortisol levels included age, BCI, and year of collection only, and the number of bachelors in the home range appeared in subsequent, though still high-ranked, models. Among the variables not of direct interest, we found some significant results relating to hair color and hair texture. Differences in HCC patterns between feral and domestically kept horses (e.g., age and sex) are likely linked to periods of resource limitations, particularly for individuals experiencing energetically demanding processes such as reproduction, illness/parasitism, or related to experiencing the full range of social and reproductive behaviors.
RESUMEN
Individual-based study of natural populations allows for accurate and precise estimation of fitness components and the extent to which they might vary with ecological conditions. By tracking the fates of all 701 horses known to have lived on Sable Island, Canada, from 2009 to 2013 (where there is no predation, human interference, or interspecific competition for food), we present a detailed analysis of structured population dynamics with focus on interacting effects of intraspecific competition and weather on reproduction and survival. Annual survival of adult females (0.866 ± 0.107 [[Formula: see text] ± SE]) was lower than that of 3-year-olds (0.955 ± 0.051), although annual fecundity (producing a foal in a year that was observed during our census) was higher in adults (0.616 ± 0.023) compared to 3-year-olds (0.402 ± 0.054). Milder winters and lower densities during gestation increased fecundity. Density negatively impacted survival for all age and sex categories; however, highest adult female survival was observed during high-density years coupled with a harsh winter, the result expected if pregnancy loss during winter or loss of foals in spring improved survival. Three-year-old females, which reproduced at lower rates, experienced higher survival than adults. Our results contrast with a previous study of feral horses that suggested recently feral ungulates might be artificially selected to reproduce even when costs to survival are high. In part, this may be because of the comparably long history of feralization (250 years; at least 25 generations) for Sable Island horses.