Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Rev Sci Instrum ; 93(12): 124703, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36586908

RESUMEN

A modular electromagnetic railgun accelerator facility named "RAFTAR" (i.e., Railgun Accelerator Facility for Technology and Research) has been commissioned and its performance has been characterized for high velocity impact testing on materials in a single-shot mode. In the first tests, RAFTAR demonstrated an acceleration of more than 1000 m/s for an 8 g solid aluminum-7075 armature projectile. The current fed was 220 kA, having a muzzle time of about 1.75 ms. It is a single pulse breech-fed rectangular bore (14 × 13 mm2) railgun, and its 1.15 m long barrel assembly consists of two parallel copper bars with an inter-gap of 13 mm that are encased within 50 mm thick high strength reinforced fiberglass sheets (Garolite G10-FR4) and bolted from both the sides. RAFTAR is powered by two capacitor bank modules that have a maximum stored energy of 160 kJ each (containing eight 178 µF/15 kV capacitors), two high power ignitron switches, and a pulse shaping inductor. To obtain consistent acceleration of the armature inside the barrel, reversal of driving current is prevented, and its pulse duration is stretched by tactical integration of the crowbar switch and bitter coil inductor in the circuit. Armature projectile velocity measurement in-bore and outside in free space was performed by the time-of-flight technique using indigenously made miniature B-dot sensors and a novel shorting-foil arrangement, respectively. The time resolved measurement of the in-bore armature evidenced a velocity-skin-effect in the high acceleration phase. There is good agreement between the experimentally measured and theoretically predicted efficiency, confirming the optimal choice of operating parameters. The conclusion summarizes important experimental findings and analyzes the underlying causes that limit the performance of railguns.

2.
Rev Sci Instrum ; 87(9): 095102, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27782610

RESUMEN

The results of characterization experiments carried out on a newly developed dense plasma focus device based intense pulsed neutron source with efficient and compact pulsed power system are reported. Its high current sealed pseudospark switch based low inductance capacitor bank with maximum stored energy of ∼10 kJ is segregated into four modules of ∼2.5 kJ each and it cumulatively delivers peak current in the range of 400 kA-600 kA (corresponding to charging voltage range of 14 kV-18 kV) in a quarter time period of ∼2 µs. The neutron yield performance of this device has been optimized by discretely varying deuterium filling gas pressure in the range of 6 mbar-11 mbar at ∼17 kV/550 kA discharge. At ∼7 kJ/8.5 mbar operation, the average neutron yield has been measured to be in the order of ∼4 × 109 neutrons/pulse which is the highest ever reported neutron yield from a plasma focus device with the same stored energy. The average forward to radial anisotropy in neutron yield is found to be ∼2. The entire system is contained on a moveable trolley having dimensions 1.5 m × 1 m × 0.7 m and its operation and control (up to the distance of 25 m) are facilitated through optically isolated handheld remote console. The overall compactness of this system provides minimum proximity to small as well as large samples for irradiation. The major intended application objective of this high neutron yield dense plasma focus device development is to explore the feasibility of active neutron interrogation experiments by utilization of intense pulsed neutron sources.

3.
Rev Sci Instrum ; 85(9): 095117, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25273782

RESUMEN

The performance of railgap switch critically relies upon multichannel breakdown between the extended electrodes (rails) in order to ensure distributed current transfer along electrode length and to minimize the switch inductance. The initiation of several simultaneous arc channels along the switch length depends on the gap triggering technique and on the rate at which the electric field changes within the gap. This paper presents design, construction, and output characteristics of a coaxial cable based three-stage transmission line transformer (TLT) that is capable of initiating multichannel breakdown in a high voltage, low inductance railgap switch. In each stage three identical lengths of URM67 coaxial cables have been used in parallel and they have been wounded in separate cassettes to enhance the isolation of the output of transformer from the input. The cascaded output impedance of TLT is ~50 Ω. Along with multi-channel formation over the complete length of electrode rails, significant reduction in jitter (≤2 ns) and conduction delay (≤60 ns) has been observed by the realization of large amplitude (~80 kV), high dV/dt (~6 kV/ns) pulse produced by the indigenously developed TLT based trigger generator. The superior performance of TLT over conventional pulse transformer for railgap triggering application has been compared and demonstrated experimentally.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA