Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Cell ; 75(4): 700-710.e6, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31442422

RESUMEN

Microrchidia (MORC) ATPases are critical for gene silencing and chromatin compaction in multiple eukaryotic systems, but the mechanisms by which MORC proteins act are poorly understood. Here, we apply a series of biochemical, single-molecule, and cell-based imaging approaches to better understand the function of the Caenorhabditis elegans MORC-1 protein. We find that MORC-1 binds to DNA in a length-dependent but sequence non-specific manner and compacts DNA by forming DNA loops. MORC-1 molecules diffuse along DNA but become static as they grow into foci that are topologically entrapped on DNA. Consistent with the observed MORC-1 multimeric assemblies, MORC-1 forms nuclear puncta in cells and can also form phase-separated droplets in vitro. We also demonstrate that MORC-1 compacts nucleosome templates. These results suggest that MORCs affect genome structure and gene silencing by forming multimeric assemblages to topologically entrap and progressively loop and compact chromatin.


Asunto(s)
Proteínas de Caenorhabditis elegans/química , Caenorhabditis elegans/química , ADN de Helmintos/química , Proteínas Nucleares/química , Conformación de Ácido Nucleico , Nucleosomas/química , Multimerización de Proteína , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/ultraestructura , ADN de Helmintos/metabolismo , Nucleosomas/metabolismo , Nucleosomas/ultraestructura
2.
Medicina (Kaunas) ; 60(5)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38792972

RESUMEN

Background and Objectives: Despite the promise of phage therapy (PT), its efficacy in prosthetic joint infection (PJI) management is unknown. Much of the current literature is largely limited to case reports and series. Materials and Methods: In order to help inform power calculations for future clinical trials and comparative analyses, we performed a systematic review and proportional meta-analysis of early PT outcomes to provide a preliminary assessment of early phage therapy treatment outcomes for cases of PJI. Results: In a search of available literature across MEDLINE (Ovid, Wolters Kluwer, Alphen aan den Rijn, The Netherlands), Embase (Elsevier, Amsterdam, The Netherlands), the Web of Science Core Collection (Clarivate, London, UK), and Cochrane Central (Wiley, Hoboken, NJ, USA) up to 23 September 2023, we identified 37 patients with PJIs receiving adjunctive PT. Patients most frequently reported Staphylococcal species infection (95%) and intraarticular phage delivery (73%). Phage cocktail (65%) and antibiotic co-administration (97%) were common. A random-effects proportional meta-analysis suggested infection remission in 78% of patients (95% CI: 39%, 95%) (I2 = 55%, p = 0.08) and 83% with a minimum 12-month follow-up (95% CI: 53%, 95%) (I2 = 26%, p = 0.26). Conclusions: Our study provides a preliminary estimate of PT's efficacy in PJIs and informs future comparative studies.


Asunto(s)
Terapia de Fagos , Infecciones Relacionadas con Prótesis , Humanos , Infecciones Relacionadas con Prótesis/terapia , Terapia de Fagos/métodos , Resultado del Tratamiento
3.
Cell Rep Med ; 4(9): 101189, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37729872

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is molecularly heterogeneous, immune infiltrated, and selectively sensitive to immune checkpoint inhibition (ICI). However, the joint tumor-immune states that mediate ICI response remain elusive. We develop spatially aware deep-learning models of tumor and immune features to learn representations of ccRCC tumors using diagnostic whole-slide images (WSIs) in untreated and treated contexts (n = 1,102 patients). We identify patterns of grade heterogeneity in WSIs not achievable through human pathologist analysis, and these graph-based "microheterogeneity" structures associate with PBRM1 loss of function and with patient outcomes. Joint analysis of tumor phenotypes and immune infiltration identifies a subpopulation of highly infiltrated, microheterogeneous tumors responsive to ICI. In paired multiplex immunofluorescence images of ccRCC, microheterogeneity associates with greater PD1 activation in CD8+ lymphocytes and increased tumor-immune interactions. Our work reveals spatially interacting tumor-immune structures underlying ccRCC biology that may also inform selective response to ICI.


Asunto(s)
Carcinoma de Células Renales , Carcinoma , Aprendizaje Profundo , Neoplasias Renales , Humanos , Carcinoma de Células Renales/genética , Fenotipo
4.
bioRxiv ; 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36712053

RESUMEN

Clear cell renal cell carcinoma (ccRCC) is molecularly heterogeneous, immune infiltrated, and selectively sensitive to immune checkpoint inhibition (ICI). Established histopathology paradigms like nuclear grade have baseline prognostic relevance for ccRCC, although whether existing or novel histologic features encode additional heterogeneous biological and clinical states in ccRCC is uncertain. Here, we developed spatially aware deep learning models of tumor- and immune-related features to learn representations of ccRCC tumors using diagnostic whole-slide images (WSI) in untreated and treated contexts (n = 1102 patients). We discovered patterns of nuclear grade heterogeneity in WSI not achievable through human pathologist analysis, and these graph-based "microheterogeneity" structures associated with PBRM1 loss of function, adverse clinical factors, and selective patient response to ICI. Joint computer vision analysis of tumor phenotypes with inferred tumor infiltrating lymphocyte density identified a further subpopulation of highly infiltrated, microheterogeneous tumors responsive to ICI. In paired multiplex immunofluorescence images of ccRCC, microheterogeneity associated with greater PD1 activation in CD8+ lymphocytes and increased tumor-immune interactions. Thus, our work reveals novel spatially interacting tumor-immune structures underlying ccRCC biology that can also inform selective response to ICI.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA