Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Proteomics ; 19(21-22): e1800454, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31430054

RESUMEN

Many solid cancers are hierarchically organized with a small number of cancer stem cells (CSCs) able to regrow a tumor, while their progeny lacks this feature. Breast CSC is known to contribute to therapy resistance. The study of those cells is usually based on their cell-surface markers like CD44high /CD24low/neg or their aldehyde dehydrogenase (ALDH) activity. However, these markers cannot be used to track the dynamics of CSC. Here, a transcriptomic analysis is performed to identify segregating gene expression in CSCs and non-CSCs, sorted by Aldefluor assay. It is observed that among ALDH-associated genes, only ALDH1A1 isoform is increased in CSCs. A CSC reporter system is then developed by using a far red-fluorescent protein (mNeptune) under the control of ALDH1A1 promoter. mNeptune-positive cells exhibit higher sphere-forming capacity, tumor formation, and increased resistance to anticancer therapies. These results indicate that the reporter identifies cells with stemness characteristics. Moreover, live tracking of cells in a microfluidic system reveals a higher extravasation potential of CSCs. Live tracking of non-CSCs under irradiation treatment show, for the first time, live reprogramming of non-CSCs into CSCs. Therefore, the reporter will allow for cell tracking to better understand the implication of CSCs in breast cancer development and recurrence.


Asunto(s)
Familia de Aldehído Deshidrogenasa 1/genética , Neoplasias de la Mama/genética , Rastreo Celular , Perfilación de la Expresión Génica , Genes Reporteros , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Retinal-Deshidrogenasa/genética , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Línea Celular Tumoral , Reprogramación Celular/efectos de los fármacos , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genoma Humano , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ratones Endogámicos NOD , Ratones SCID , Células Madre Neoplásicas/efectos de los fármacos , Regiones Promotoras Genéticas/genética , Reproducibilidad de los Resultados
2.
Bioconjug Chem ; 29(7): 2370-2381, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29878753

RESUMEN

The severe side effects associated with the use of anthracycline anticancer agents continues to limit their use. Herein we describe the synthesis and preliminary biological evaluation of three enzymatically activatable doxorubicin-oligosaccharide prodrugs. The synthetic protocol allows late stage variation of the carbohydrate and is compatible with the use of disaccharides such as lactose as well as more complex oligosaccharides such as xyloglucan oligomers. The enzymatic release of doxorubicin from the prodrugs by both protease (plasmin) and human carboxylesterases (hCE1 and 2) was demonstrated in vitro and the cytotoxic effect of the prodrugs was assayed on MCF-7 breast cancer cells.


Asunto(s)
Doxorrubicina/uso terapéutico , Oligosacáridos/química , Profármacos/síntesis química , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Hidrolasas de Éster Carboxílico/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Fibrinolisina/metabolismo , Humanos , Células MCF-7 , Profármacos/metabolismo
3.
Stem Cells ; 33(2): 342-53, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25286822

RESUMEN

The discovery of cancer stem cells (CSCs) fundamentally advanced our understanding of the mechanisms governing breast cancer development. However, the stimuli that control breast CSC self-renewal and differentiation have still not been fully detailed. We previously showed that nerve growth factor (NGF) and its precursor proNGF can stimulate breast cancer cell growth and invasion in an autocrine manner. In this study, we investigated the effects of NGF and proNGF on the breast CSC compartment and found that NGF or proNGF enrich for CSCs in several breast cancer cell lines. This enrichment appeared to be achieved by increasing the number of symmetric divisions of quiescent/slow-proliferating CSCs. Interestingly, in vitro NGF pretreatment of MCF-7 luminal breast cancer cells promoted epithelial to mesenchymal transition in tumors of severe combined immunodeficient mice. Furthermore, p75(NTR), the common receptor for both neurotrophins and proneurotrophins, mediated breast CSC self-renewal by regulating the expression of pluripotency transcription factors. Our data indicate, for the first time, that the NGF/proNGF/p75(NTR) axis plays a critical role in regulating breast CSC self-renewal and plasticity.


Asunto(s)
Comunicación Autocrina , Neoplasias de la Mama/metabolismo , Proliferación Celular , Transición Epitelial-Mesenquimal , Proteínas de Neoplasias/metabolismo , Células Madre Neoplásicas/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Precursores de Proteínas/metabolismo , Nicho de Células Madre , Animales , Neoplasias de la Mama/patología , Femenino , Humanos , Ratones , Ratones SCID , Invasividad Neoplásica , Células Madre Neoplásicas/patología , Proteínas del Tejido Nervioso/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo
4.
Bioorg Med Chem ; 24(4): 651-60, 2016 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-26740155

RESUMEN

Three series of indeno[1,2-c]isoquinolines bearing a ferrocenyl entity were synthesized and evaluated for DNA interaction, topoisomerase I and II inhibition, and cytotoxicity against breast human cancer cell lines. In the first and second series, the ferrocenyl scaffold was inserted as a linker between the two nitrogen atoms. In the last series, it was introduced at the end of the carbon chain. The present study showed that the ferrocenyl entity enhanced the topoisomerase II inhibition. Most compounds showed a potent growth inhibitory effect on MDA-MB-231 cell line with the IC50 in µM range.


Asunto(s)
Antineoplásicos/farmacología , Proteínas de Unión al ADN/antagonistas & inhibidores , Compuestos Ferrosos/síntesis química , Compuestos Ferrosos/farmacología , Isoquinolinas/síntesis química , Isoquinolinas/farmacología , Inhibidores de Topoisomerasa II/síntesis química , Inhibidores de Topoisomerasa II/farmacología , Antígenos de Neoplasias/metabolismo , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/metabolismo , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Compuestos Ferrosos/química , Humanos , Concentración 50 Inhibidora , Isoquinolinas/química , Estructura Molecular , Relación Estructura-Actividad , Inhibidores de Topoisomerasa II/química , Células Tumorales Cultivadas
5.
Bioorg Med Chem ; 23(13): 3712-21, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25937235

RESUMEN

A screening program aimed at discovering novel anticancer agents based on natural products led to the selection of koningic acid (KA), known as a potent inhibitor of glycolysis. A method was set up to produce this fungal sesquiterpene lactone in large quantities by fermentation, thus allowing (i) an extensive analysis of its anticancer potential in vitro and in vivo and (ii) the semi-synthesis of analogues to delineate structure-activity relationships. KA was characterized as a potent, but non-selective cytotoxic agent, active under both normoxic and hypoxic conditions and inactive in the A549 lung cancer xenograft model. According to our SAR, the acidic group could be replaced to keep bioactivity but an intact epoxide is essential.


Asunto(s)
Antineoplásicos/síntesis química , Neoplasias Pulmonares/tratamiento farmacológico , Animales , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Hipoxia de la Célula , Línea Celular Tumoral , Fermentación , Glucólisis/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Sesquiterpenos/síntesis química , Sesquiterpenos/aislamiento & purificación , Sesquiterpenos/farmacocinética , Sesquiterpenos/farmacología , Relación Estructura-Actividad , Trichoderma/química , Trichoderma/metabolismo , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Invest New Drugs ; 32(5): 883-92, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25008900

RESUMEN

The poor prognosis of children with high-grade glioma (HGG) and high-risk neuroblastoma, despite multidisciplinary therapeutic approaches, demands new treatments for these indications. F14512 is a topoisomerase II inhibitor containing a spermine moiety that facilitates selective uptake by tumor cells via the Polyamine Transport System (PTS) and increases topoisomerase II poisoning. Here, F14512 was evaluated in pediatric HGG and neuroblastoma cell lines. PTS activity and specificity were evaluated using a fluorescent spermine-coupled probe. The cytotoxicity of F14512, alone or in combination with ionizing radiation and chemotherapeutic agents, was investigated in vitro. The antitumor activity of F14512 was assessed in vivo using a liver-metastatic model of neuroblastoma. An active PTS was evidenced in all tested cell lines, providing a specific and rapid transfer of spermine-coupled compounds into cell nuclei. Competition experiments confirmed the essential role of PTS in the cell uptake and cytotoxicity of F14512. This cytotoxicity appeared greater in neuroblastoma cells compared with HGG cells but appeared independent of PTS activity levels. In vivo evaluation confirmed a marked and prolonged antitumoral effect in neuroblastoma cells. The combinations of F14512 with cisplatin and carboplatin were often found to be synergistic, and we demonstrated the significant radiosensitizing potential of F14512 in the MYCN-amplified Kelly cell line. Thus, F14512 appears more effective than etoposide in pediatric tumor cell lines, with greater efficacy in neuroblastoma cells compared with HGG cells. The synergistic effects observed with platinum compounds and the radiosensitizing effect could lead to a clinical development of the drug in pediatric oncology.


Asunto(s)
Antineoplásicos/farmacología , Podofilotoxina/análogos & derivados , Espermina/química , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Carboplatino/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Cisplatino/farmacología , Etopósido/farmacología , Femenino , Glioma/tratamiento farmacológico , Glioma/radioterapia , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/secundario , Melfalán/farmacología , Ratones Endogámicos BALB C , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/patología , Neuroblastoma/radioterapia , Podofilotoxina/química , Podofilotoxina/farmacología , Podofilotoxina/uso terapéutico , Radiación Ionizante
7.
Anticancer Drugs ; 24(8): 818-25, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23728220

RESUMEN

The prognosis of children with high-grade glioma or high-risk neuroblastoma remains poor. Cilengitide is a selective antagonist of αvß3 and αvß5 integrins, which are involved in tumor growth and development of metastasis. We have evaluated the effects of cilengitide on pediatric glioma and neuroblastoma cell lines for the first time. Expression levels of αvß3 and αvß5 were determined by flow cytometry in three neuroblastoma and five pediatric glioma cell lines compared with adult U87-MG before and after irradiation. Cell detachment, cytotoxicity, and cell growth under nonadhesive conditions were measured using the MTS assay. Cell death and apoptosis were assessed by annexin-V/propidium iodide staining. The varying αvß3 and αvß5 expression levels were unrelated to tumor grade. Irrespective of the αvß5 expression level, the pediatric cells expressing αvß3 were dose dependently sensitive to cilengitide. UW479 cells expressed only αvß5 integrin and were not sensitive to cilengitide, suggesting that cilengitide's action largely depends on αvß3 inhibition. Cell detachment resulted in a higher cytotoxicity in pediatric glioma compared with U87-MG cells, which seem able to grow despite the significant cilengitide-induced cell detachment. Growth kinetics on polyHEMA showed that only pediatric glioma cells were sensitive to anoikis and so died after cilengitide-induced detachment. Furthermore, irradiation of glioma cells increased αvß3 expression slightly but not cilengitide sensitivity. Cilengitide's action on glioma and neuroblastoma cells appears to be dependent on αvß3 expression and sensitivity to anoikis. Cilengitide is able to target pediatric glioma and neuroblastoma cells in vitro directly and efficiently. Tumor context could validate these promising observations.


Asunto(s)
Anoicis/efectos de los fármacos , Antineoplásicos/farmacología , Adhesión Celular/efectos de los fármacos , Glioma/patología , Neuroblastoma/patología , Venenos de Serpiente/farmacología , Factores de Edad , Anoicis/efectos de la radiación , Adhesión Celular/efectos de la radiación , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Citometría de Flujo , Glioma/metabolismo , Humanos , Integrina alfaVbeta3/antagonistas & inhibidores , Integrina alfaVbeta3/metabolismo , Clasificación del Tumor , Neuroblastoma/metabolismo , Radioterapia Adyuvante , Receptores de Vitronectina/antagonistas & inhibidores , Receptores de Vitronectina/metabolismo , Factores de Tiempo
8.
Bioorg Med Chem ; 21(6): 1451-64, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23168081

RESUMEN

Carbonic anhydrase (CA) IX expression is increased upon hypoxia and has been proposed as a therapeutic target since it has been associated with poor prognosis, tumor progression and pH regulation. We report the synthesis and the pharmacological evaluation of a new class of human carbonic anhydrase (hCA) inhibitors, 4-(5-aryl-2-hydroxymethyl-pyrazol-1-yl)-benzenesulfonamides. A molecular modeling study was conducted in order to simulate the binding mode of this new family of enzyme inhibitors within the active site of hCA IX. Pharmacological studies revealed high hCA IX inhibitory potency in the parameters nanomolar range. This study showed that the position of sulfonamide group in meta of the 1-phenylpyrazole increase a selectivity hCA IX versus hCA II of our compounds. An in vitro antiproliferative screening has been performed on the breast cancer MDA-MB-231 cell using doxorubicin as cytotoxic agent and in presence of selected CA IX inhibitor. The results shown that the cytotoxic efficiency of doxorubicin in an hypoxic environment, expressed in IC50 value, is restored at 20% level with 1µM CA IX inhibitor.


Asunto(s)
Antígenos de Neoplasias/química , Inhibidores de Anhidrasa Carbónica/síntesis química , Anhidrasas Carbónicas/química , Pirazoles/química , Sulfonamidas/química , Antígenos de Neoplasias/metabolismo , Sitios de Unión , Anhidrasa Carbónica IX , Inhibidores de Anhidrasa Carbónica/metabolismo , Inhibidores de Anhidrasa Carbónica/toxicidad , Anhidrasas Carbónicas/metabolismo , Dominio Catalítico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Cinética , Simulación del Acoplamiento Molecular , Unión Proteica , Relación Estructura-Actividad , Sulfonamidas/metabolismo , Sulfonamidas/toxicidad , Bencenosulfonamidas
9.
Cancer Res ; : OF1-OF17, 2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37195023

RESUMEN

Diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPG), are the most lethal of childhood cancers. Palliative radiotherapy is the only established treatment, with median patient survival of 9 to 11 months. ONC201 is a DRD2 antagonist and ClpP agonist that has shown preclinical and emerging clinical efficacy in DMG. However, further work is needed to identify the mechanisms of response of DIPGs to ONC201 treatment and to determine whether recurring genomic features influence response. Using a systems-biological approach, we showed that ONC201 elicits potent agonism of the mitochondrial protease ClpP to drive proteolysis of electron transport chain and tricarboxylic acid cycle proteins. DIPGs harboring PIK3CA mutations showed increased sensitivity to ONC201, whereas those harboring TP53 mutations were more resistant. Metabolic adaptation and reduced sensitivity to ONC201 was promoted by redox-activated PI3K/Akt signaling, which could be counteracted using the brain penetrant PI3K/Akt inhibitor, paxalisib. Together, these discoveries coupled with the powerful anti-DIPG/DMG pharmacokinetic and pharmacodynamic properties of ONC201 and paxalisib have provided the rationale for the ongoing DIPG/DMG phase II combination clinical trial NCT05009992. SIGNIFICANCE: PI3K/Akt signaling promotes metabolic adaptation to ONC201-mediated disruption of mitochondrial energy homeostasis in diffuse intrinsic pontine glioma, highlighting the utility of a combination treatment strategy using ONC201 and the PI3K/Akt inhibitor paxalisib.

10.
Cancer Res ; 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37145169

RESUMEN

Diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPGs), are the most lethal of childhood cancers. Palliative radiotherapy is the only established treatment, with median patient survival of 9-11 months. ONC201 is a DRD2 antagonist and ClpP agonist that has shown preclinical and emerging clinical efficacy in DMG. However, further work is needed to identify the mechanisms of response of DIPGs to ONC201 treatment and to determine whether recurring genomic features influence response. Using a systems-biological approach, we showed that ONC201 elicits potent agonism of the mitochondrial protease ClpP to drive proteolysis of electron transport chain and tricarboxylic acid cycle proteins. DIPGs harboring PIK3CA-mutations showed increased sensitivity to ONC201, while those harboring TP53-mutations were more resistant. Metabolic adaptation and reduced sensitivity to ONC201 was promoted by redox-activated PI3K/Akt signaling, which could be counteracted using the brain penetrant PI3K/Akt inhibitor, paxalisib. Together, these discoveries coupled with the powerful anti-DIPG/DMG pharmacokinetic and pharmacodynamic properties of ONC201 and paxalisib have provided the rationale for the ongoing DIPG/DMG phase II combination clinical trial NCT05009992.

11.
Cancers (Basel) ; 14(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36230504

RESUMEN

Cancer progression occurs in concomitance with a profound remodeling of the cellular microenvironment. Far from being a mere passive event, the re-orchestration of interactions between the various cell types surrounding tumors highly contributes to the progression of the latter. Tumors notably recruit and stimulate the sprouting of new blood vessels through a process called neo-angiogenesis. Beyond helping the tumor cope with an increased metabolic demand associated with rapid growth, this also controls the metastatic dissemination of cancer cells and the infiltration of immune cells in the tumor microenvironment. To decipher this critical interplay for the clinical progression of tumors, the research community has developed several valuable models in the last decades. This review offers an overview of the various instrumental solutions currently available, including microfluidic chips, co-culture models, and the recent rise of organoids. We highlight the advantages of each technique and the specific questions they can address to better understand the tumor immuno-angiogenic ecosystem. Finally, we discuss this development field's fundamental and applied perspectives.

12.
Cancers (Basel) ; 14(21)2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36358750

RESUMEN

Epithelial ovarian cancers (EOC) are often diagnosed at an advanced stage with carcinomatosis and a poor prognosis. First-line treatment is based on a chemotherapy regimen combining a platinum-based drug and a taxane-based drug along with surgery. More than half of the patients will have concern about a recurrence. To improve the outcomes, new therapeutics are needed, and diverse strategies, such as immunotherapy, are currently being tested in EOC. To better understand the global immune contexture in EOC, several studies have been performed to decipher the landscape of tumor-infiltrating lymphocytes (TILs). CD8+ TILs are usually considered effective antitumor immune effectors that immune checkpoint inhibitors can potentially activate to reject tumor cells. To synthesize the knowledge of TILs in EOC, we conducted a review of studies published in MEDLINE or EMBASE in the last 10 years according to the PRISMA guidelines. The description and role of TILs in EOC prognosis are reviewed from the published data. The links between TILs, DNA repair deficiency, and ICs have been studied. Finally, this review describes the role of TILs in future immunotherapy for EOC.

13.
Front Endocrinol (Lausanne) ; 12: 742215, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539584

RESUMEN

Radiotherapy is an important component of cancer treatment, with approximately 50% of all cancer patients receiving radiation therapy during their course of illness. Nevertheless, solid tumors frequently exhibit hypoxic areas, which can hinder therapies efficacy, especially radiotherapy one. Indeed, hypoxia impacts the six parameters governing the radiotherapy response, called the « six Rs of radiation biology ¼ (for Radiosensitivity, Repair, Repopulation, Redistribution, Reoxygenation, and Reactivation of anti-tumor immune response), by inducing pleiotropic cellular adaptions, such as cell metabolism rewiring, epigenetic landscape remodeling, and cell death weakening, with significant clinical repercussions. In this review, according to the six Rs, we detail how hypoxia, and associated mechanisms and pathways, impact the radiotherapy response of solid tumors and the resulting clinical implications. We finally illustrate it in hypoxic endocrine cancers through a focus on anaplastic thyroid carcinomas.


Asunto(s)
Hipoxia/etiología , Neoplasias/metabolismo , Neoplasias/radioterapia , Radiobiología , Animales , Humanos , Hipoxia/metabolismo , Consumo de Oxígeno , Tolerancia a Radiación
14.
Med Sci (Paris) ; 37(2): 159-166, 2021 Feb.
Artículo en Francés | MEDLINE | ID: mdl-33591259

RESUMEN

Pediatric brain cancers represent the most frequent solid tumors and the leading cause of cancer-driven mortality in children. Pediatric High Grade Gliomas display a very poor prognosis. Among these, DIPG (Diffuse Intrinsic Pontine Gliomas), localized to the brain stem, cannot benefit from a total exeresis due to this critical location and to their highly infiltrating nature. Radiotherapy remains the standard treatment against these tumors for almost five decades, and attempts to improve the prognosis of patients with chemotherapy or targeted therapies have failed. Thanks to the rise of high throughput sequencing, the knowledge of molecular alterations in pediatric gliomas strongly progressed and allowed to highlight distinct biomolecular entities and to establish more accurate diagnoses. In this review, we summarize this new information and the perspectives that it brings for clinical strategies.


TITLE: L'art de la guerre appliqué aux DIPG - Connais ton ennemi. ABSTRACT: Les tumeurs cérébrales pédiatriques représentent la principale cause de mortalité par cancer chez l'enfant. Alors que l'exérèse complète a une valeur pronostique dans certains gliomes de haut grade, les DIPG (diffuse intrinsic pontine gliomas) ne peuvent en bénéficier du fait d'une localisation critique au niveau du tronc cérébral et de leur caractère infiltrant. La radiothérapie demeure le traitement de référence contre ces tumeurs depuis bientôt cinquante ans, et les tentatives pour améliorer le pronostic vital des patients à l'aide de chimiothérapies ou de thérapies ciblées se sont révélées infructueuses. La connaissance des altérations moléculaires dans ces gliomes a fortement progressé cette dernière décennie, grâce aux progrès du séquençage à haut débit. Cela a permis de révéler des entités distinctes au niveau moléculaire et de préciser des diagnostics discriminants. Dans cette revue, nous faisons le point sur ces nouvelles connaissances et les perspectives qu'elles apportent en termes de stratégies cliniques.


Asunto(s)
Neoplasias Encefálicas/terapia , Glioma/terapia , Oncología Médica/tendencias , Edad de Inicio , Neoplasias Encefálicas/epidemiología , Neoplasias Encefálicas/patología , Niño , Vías Clínicas/tendencias , Glioma/epidemiología , Glioma/patología , Humanos , Oncología Médica/métodos , Pronóstico
15.
Cancers (Basel) ; 13(8)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918823

RESUMEN

Hypoxia is a hallmark of many solid tumors and is associated with resistance to anticancer treatments. Hypoxia-activated prodrugs (HAPs) were developed to target the hypoxic regions of these tumors. Among 2nd generation HAPs, Evofosfamide (Evo, also known as TH-302) exhibits preclinical and clinical activities against adult glioblastoma. In this study, we evaluated its potential in the field of pediatric neuro-oncology. We assessed the efficacy of Evo in vitro as a single drug, or in combination with SN38, doxorubicin, and etoposide, against three pediatric high-grade glioma (pHGG) and three diffuse intrinsic pontine glioma (DIPG) cell lines under hypoxic conditions. We also investigated radio-sensitizing effects using clonogenic assays. Evo inhibited the growth of all cell lines, mainly under hypoxia. We also highlighted a significant synergism between Evo and doxorubicin, SN38, or etoposide. Finally, Evo radio-sensitized the pHGG cell line tested, both with fractionated and single-dose irradiation schedules. Altogether, we report here the first preclinical proof of evidence about Evofosfamide efficiency against hypoxic pHGG and DIPG cells. Since such tumors are highly hypoxic, and Evo potentiates the effect of ionizing radiation and chemotherapy, it appears as a promising therapeutic strategy for children with brain tumors.

16.
Cells ; 10(6)2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203746

RESUMEN

Tremendous data have been accumulated in the effort to understand chemoresistance of triple negative breast cancer (TNBC). However, modifications in cancer cells surviving combined and sequential treatment still remain poorly described. In order to mimic clinical neoadjuvant treatment, we first treated MDA-MB-231 and SUM159-PT TNBC cell lines with epirubicin and cyclophosphamide for 2 days, and then with paclitaxel for another 2 days. After 4 days of recovery, persistent cells surviving the treatment were characterized at both cellular and molecular level. Persistent cells exhibited increased growth and were more invasive in vitro and in zebrafish model. Persistent cells were enriched for vimentinhigh sub-population, vimentin knockdown using siRNA approach decreased the invasive and sphere forming capacities as well as Akt phosphorylation in persistent cells, indicating that vimentin is involved in chemotherapeutic treatment-induced enhancement of TNBC aggressiveness. Interestingly, ectopic vimentin overexpression in native cells increased cell invasion and sphere formation as well as Akt phosphorylation. Furthermore, vimentin overexpression alone rendered the native cells resistant to the drugs, while vimentin knockdown rendered them more sensitive to the drugs. Together, our data suggest that vimentin could be considered as a new targetable player in the ever-elusive status of drug resistance and recurrence of TNBC.


Asunto(s)
Resistencia a Antineoplásicos/fisiología , Neoplasias de la Mama Triple Negativas/metabolismo , Vimentina/fisiología , Animales , Línea Celular Tumoral , Movimiento Celular/fisiología , Ciclofosfamida/farmacología , Modelos Animales de Enfermedad , Quimioterapia/métodos , Epirrubicina/farmacología , Transición Epitelial-Mesenquimal , Femenino , Humanos , Terapia Neoadyuvante/métodos , Invasividad Neoplásica/patología , Recurrencia Local de Neoplasia , Paclitaxel/uso terapéutico , Neoplasias de la Mama Triple Negativas/patología , Vimentina/metabolismo , Pez Cebra
17.
Cancers (Basel) ; 13(21)2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34771714

RESUMEN

High-grade gliomas represent the most lethal class of pediatric tumors, and their resistance to both radio- and chemotherapy is associated with a poor prognosis. Recurrent mutations affecting histone genes drive the tumorigenesis of some pediatric high-grade gliomas, and H3K27M mutations are notably characteristic of a subtype of gliomas called DMG (Diffuse Midline Gliomas). This dominant negative mutation impairs H3K27 trimethylation, leading to profound epigenetic modifications of genes expression. Even though this mutation was described as a driver event in tumorigenesis, its role in tumor cell resistance to treatments has not been deciphered so far. To tackle this issue, we expressed the H3.3K27M mutated histone in three initially H3K27-unmutated pediatric glioma cell lines, Res259, SF188, and KNS42. First, we validated these new H3.3K27M-expressing models at the molecular level and showed that K27M expression is associated with pleiotropic effects on the transcriptomic signature, largely dependent on cell context. We observed that the mutation triggered an increase in cell growth in Res259 and SF188 cells, associated with higher clonogenic capacities. Interestingly, we evidenced that the mutation confers an increased resistance to ionizing radiations in Res259 and KNS42 cells. Moreover, we showed that H3.3K27M mutation impacts the sensitivity of Res259 cells to specific drugs among a library of 80 anticancerous compounds. Altogether, these data highlight that, beyond its tumorigenic role, H3.3K27M mutation is strongly involved in pediatric glioma cells' resistance to therapies, likely through transcriptomic reprogramming.

18.
Fluids Barriers CNS ; 17(1): 37, 2020 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-32487241

RESUMEN

BACKGROUND: Pediatric diffuse intrinsic pontine glioma (DIPG) represents one of the most devastating and lethal brain tumors in children with a median survival of 12 months. The high mortality rate can be explained by the ineligibility of patients to surgical resection due to the diffuse growth pattern and midline localization of the tumor. While the therapeutic strategies are unfortunately palliative, the blood-brain barrier (BBB) is suspected to be responsible for the treatment inefficiency. Located at the brain capillary endothelial cells (ECs), the BBB has specific properties to tightly control and restrict the access of molecules to the brain parenchyma including chemotherapeutic compounds. However, these BBB specific properties can be modified in a pathological environment, thus modulating brain exposure to therapeutic drugs. Hence, this study aimed at developing a syngeneic human blood-brain tumor barrier model to understand how the presence of DIPG impacts the structure and function of brain capillary ECs. METHODS: A human syngeneic in vitro BBB model consisting of a triple culture of human (ECs) (differentiated from CD34+-stem cells), pericytes and astrocytes was developed. Once validated in terms of BBB phenotype, this model was adapted to develop a blood-brain tumor barrier (BBTB) model specific to pediatric DIPG by replacing the astrocytes by DIPG-007, -013 and -014 cells. The physical and metabolic properties of the BBTB ECs were analyzed and compared to the BBB ECs. The permeability of both models to chemotherapeutic compounds was evaluated. RESULTS: In line with clinical observation, the integrity of the BBTB ECs remained intact until 7 days of incubation. Both transcriptional expression and activity of efflux transporters were not strongly modified by the presence of DIPG. The permeability of ECs to the chemotherapeutic drugs temozolomide and panobinostat was not affected by the DIPG environment. CONCLUSIONS: This original human BBTB model allows a better understanding of the influence of DIPG on the BBTB ECs phenotype. Our data reveal that the chemoresistance described for DIPG does not come from the development of a "super BBB". These results, validated by the absence of modification of drug transport through the BBTB ECs, point out the importance of understanding the implication of the different protagonists in the pathology to have a chance to significantly improve treatment efficiency.


Asunto(s)
Antineoplásicos/farmacología , Barrera Hematoencefálica , Neoplasias Encefálicas , Glioma Pontino Intrínseco Difuso , Resistencia a Antineoplásicos , Modelos Neurológicos , Barrera Hematoencefálica/efectos de los fármacos , Neoplasias Encefálicas/tratamiento farmacológico , Células Cultivadas , Glioma Pontino Intrínseco Difuso/tratamiento farmacológico , Células Endoteliales , Humanos , Panobinostat/farmacología , Temozolomida/farmacología
19.
Cancers (Basel) ; 12(7)2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32610610

RESUMEN

Breast cancer is a major public health problem and the leading world cause of women death by cancer. Both the recurrence and mortality of breast cancer are mainly caused by the formation of metastasis. The long non-coding RNA H19, the precursor of miR-675, is involved in breast cancer development. The aim of this work was to determine the implication but, also, the relative contribution of H19 and miR-675 to the enhancement of breast cancer metastatic potential. We showed that both H19 and miR-675 increase the invasive capacities of breast cancer cells in xenografted transgenic zebrafish models. In vitro, H19 and miR-675 enhance the cell migration and invasion, as well as colony formation. H19 seems to induce the epithelial-to-mesenchymal transition (EMT), with a decreased expression of epithelial markers and an increased expression of mesenchymal markers. Interestingly, miR-675 simultaneously increases the expression of both epithelial and mesenchymal markers, suggesting the induction of a hybrid phenotype or mesenchymal-to-epithelial transition (MET). Finally, we demonstrated for the first time that miR-675, like its precursor H19, increases the stemness properties of breast cancer cells. Altogether, our data suggest that H19 and miR-675 could enhance the aggressiveness of breast cancer cells through both common and different mechanisms.

20.
Micromachines (Basel) ; 9(6)2018 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30424208

RESUMEN

This study combines the high-throughput capabilities of microfluidics with the sensitive measurements of microelectromechanical systems (MEMS) technology to perform biophysical characterization of circulating cells for diagnostic purposes. The proposed device includes a built-in microchannel that is probed by two opposing tips performing compression and sensing separately. Mechanical displacement of the compressing tip (up to a maximum of 14 µm) and the sensing tip (with a quality factor of 8.9) are provided by two separate comb-drive actuators, and sensing is performed with a capacitive displacement sensor. The device is designed and developed for simultaneous electrical and mechanical measurements. As the device is capable of exchanging the liquid inside the channel, different solutions were tested consecutively. The performance of the device was evaluated by introducing varying concentrations of glucose (from 0.55 mM (0.1%) to 55.5 mM (10%)) and NaCl (from 0.1 mM to 10 mM) solutions in the microchannel and by monitoring changes in the mechanical and electrical properties. Moreover, we demonstrated biological sample handling by capturing single cancer cells. These results show three important capabilities of the proposed device: mechanical measurements, electrical measurements, and biological sample handling. Combined in one device, these features allow for high-throughput multi-parameter characterization of single cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA