Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
PLoS Genet ; 9(7): e1003648, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23935513

RESUMEN

At least nine dominant neurodegenerative diseases are caused by expansion of CAG repeats in coding regions of specific genes that result in abnormal elongation of polyglutamine (polyQ) tracts in the corresponding gene products. When above a threshold that is specific for each disease the expanded polyQ repeats promote protein aggregation, misfolding and neuronal cell death. The length of the polyQ tract inversely correlates with the age at disease onset. It has been observed that interruption of the CAG tract by silent (CAA) or missense (CAT) mutations may strongly modulate the effect of the expansion and delay the onset age. We have carried out an extensive study in which we have complemented DNA sequence determination with cellular and biophysical models. By sequencing cloned normal and expanded SCA1 alleles taken from our cohort of ataxia patients we have determined sequence variations not detected by allele sizing and observed for the first time that repeat instability can occur even in the presence of CAG interruptions. We show that histidine interrupted pathogenic alleles occur with relatively high frequency (11%) and that the age at onset inversely correlates linearly with the longer uninterrupted CAG stretch. This could be reproduced in a cellular model to support the hypothesis of a linear behaviour of polyQ. We clarified by in vitro studies the mechanism by which polyQ interruption slows down aggregation. Our study contributes to the understanding of the role of polyQ interruption in the SCA1 phenotype with regards to age at disease onset, prognosis and transmission.


Asunto(s)
Moléculas de Adhesión Celular Neuronal/genética , Péptidos/genética , Ataxias Espinocerebelosas/genética , Degeneraciones Espinocerebelosas/genética , Expansión de Repetición de Trinucleótido/genética , Edad de Inicio , Alelos , Moléculas de Adhesión Celular Neuronal/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación , Linaje , Péptidos/metabolismo , Ataxias Espinocerebelosas/patología , Degeneraciones Espinocerebelosas/patología
2.
Nat Struct Mol Biol ; 30(7): 1033-1039, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37095205

RESUMEN

Immunoglobulin Fc receptors are cell surface transmembrane proteins that bind to the Fc constant region of antibodies and play critical roles in regulating immune responses by activation of immune cells, clearance of immune complexes and regulation of antibody production. FcµR is the immunoglobulin M (IgM) antibody isotype-specific Fc receptor involved in the survival and activation of B cells. Here we reveal eight binding sites for the human FcµR immunoglobulin domain on the IgM pentamer by cryogenic electron microscopy. One of the sites overlaps with the binding site for the polymeric immunoglobulin receptor (pIgR), but a different mode of FcµR binding explains its antibody isotype specificity. Variation in FcµR binding sites and their occupancy reflects the asymmetry of the IgM pentameric core and the versatility of FcµR binding. The complex explains engagement with polymeric serum IgM and the monomeric IgM B-cell receptor (BCR).


Asunto(s)
Linfocitos B , Receptores Fc , Humanos , Receptores Fc/metabolismo , Linfocitos B/metabolismo , Fragmentos Fc de Inmunoglobulinas , Inmunoglobulina M/metabolismo , Sitios de Unión
3.
FEBS J ; 275(10): 2548-60, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18410380

RESUMEN

The leucine-rich repeat acidic nuclear protein (Anp32a/LANP) belongs to a family of evolutionarily-conserved phosphoproteins involved in a complex network of protein-protein interactions. In an effort to understand the cellular role, we have investigated the mode of interaction of Anp32a with its partners. As a prerequisite, we solved the structure in solution of the evolutionarily conserved N-terminal leucine-rich repeat (LRR) domain and modeled its interactions with other proteins, taking PP2A as a paradigmatic example. The interaction between the Anp32a LRR domain and the AXH domain of ataxin-1 was probed experimentally. The two isolated and unmodified domains bind with very weak (millimolar) affinity, thus suggesting the necessity either for an additional partner (e.g. other regions of either or both proteins or a third molecule) or for a post-translational modification. Finally, we identified by two-hybrid screening a new partner of the LRR domain, i.e. the microtubule plus-end tracking protein Clip 170/Restin, known to regulate the dynamic properties of microtubules and to be associated with severe human pathologies.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Conformación Proteica , Secuencia de Aminoácidos , Animales , Ataxina-1 , Ataxinas , Línea Celular , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Resonancia Magnética Nuclear Biomolecular , Proteínas Nucleares/genética , Unión Proteica , Proteína Fosfatasa 2/química , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Proteínas de Unión al ARN , Técnicas del Sistema de Dos Híbridos
4.
Cell Rep ; 23(8): 2342-2353, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29791846

RESUMEN

B cell responses are regulated by antigen acquisition, processing, and presentation to helper T cells. These functions are thought to depend on contractile activity of non-muscle myosin IIa. Here, we show that B cell-specific deletion of the myosin IIa heavy chain reduced the numbers of bone marrow B cell precursors and splenic marginal zone, peritoneal B1b, and germinal center B cells. In addition, myosin IIa-deficient follicular B cells acquired an activated phenotype and were less efficient in chemokinesis and extraction of membrane-presented antigens. Moreover, myosin IIa was indispensable for cytokinesis. Consequently, mice with myosin IIa-deficient B cells harbored reduced serum immunoglobulin levels and did not mount robust antibody responses when immunized. Altogether, these data indicate that myosin IIa is a negative regulator of B cell activation but a positive regulator of antigen acquisition from antigen-presenting cells and that myosin IIa is essential for B cell development, proliferation, and antibody responses.


Asunto(s)
Formación de Anticuerpos/inmunología , Antígenos/metabolismo , Linfocitos B/citología , Linfocitos B/inmunología , Activación de Linfocitos/inmunología , Miosina Tipo IIA no Muscular/metabolismo , Animales , Biomarcadores/metabolismo , Células de la Médula Ósea/citología , Membrana Celular/metabolismo , Movimiento Celular , Proliferación Celular , Citocinesis , Endocitosis , Ratones Endogámicos C57BL , Peritoneo/citología , Receptores de Antígenos de Linfocitos B/metabolismo , Solubilidad , Bazo/citología
5.
Structure ; 13(5): 743-53, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15893665

RESUMEN

AXH is a protein module identified in two unrelated families that comprise the transcriptional repressor HBP1 and ataxin-1 (ATX1), the protein responsible for spinocerebellar ataxia type-1 (SCA1). SCA1 is a neurodegenerative disorder associated with protein misfolding and formation of toxic intranuclear aggregates. We have solved the structure in solution of monomeric AXH from HBP1. The domain adopts a nonclassical permutation of an OB fold and binds nucleic acids, a function previously unidentified for this region of HBP1. Comparison of HBP1 AXH with the crystal structure of dimeric ATX1 AXH indicates that, despite the significant sequence homology, the two proteins have different topologies, suggesting that AXH has chameleon properties. We further demonstrate that HBP1 AXH remains monomeric, whereas the ATX1 dimer spontaneously aggregates and forms fibers. Our results describe an entirely novel, to our knowledge, example of a chameleon fold and suggest a link between these properties and the SCA1 pathogenesis.


Asunto(s)
Proteínas del Grupo de Alta Movilidad/química , Proteínas del Tejido Nervioso/química , Proteínas Nucleares/química , Proteínas de Unión al ARN/química , Proteínas Represoras/química , Secuencia de Aminoácidos , Animales , Ataxina-1 , Ataxinas , Sitios de Unión , Proteínas del Grupo de Alta Movilidad/metabolismo , Humanos , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Pliegue de Proteína , Estructura Terciaria de Proteína , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Alineación de Secuencia , Soluciones , Ataxias Espinocerebelosas/metabolismo
6.
J Mol Biol ; 354(4): 883-93, 2005 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-16277991

RESUMEN

A family of neurodegenerative diseases is associated with anomalous expansion of a polyglutamine tract in the coding region of the corresponding proteins. The current working hypothesis is that polyglutamine diseases are caused by misfolding and aggregation of the proteins with a process dictated by the polyglutamine tracts, although increasing evidence suggests an involvement of the protein context in modulating these properties. Here, we show that the AXH domain of ataxin-1, the protein involved in spinocerebellar ataxia type-1, is the region responsible for the transcriptional repression activity of ataxin-1 and participates in protein aggregation. In vitro, the isolated domain undergoes a conformational transition towards a beta-enriched structure associated with aggregation and amyloid fibre formation spontaneously and without need for destabilizing conditions. Using a transfected cell line, we demonstrate that, while determined by polyglutamine expansion, ataxin-1 aggregation is noticeably reduced by deletion of AXH or by replacement with the homologous sequence from the transcription factor HBP1, which has no known tendency to aggregate. These results provide the first direct evidence of an involvement of a region other than the polyglutamine tract in polyglutamine pathologies.


Asunto(s)
Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Amiloide , Animales , Ataxinas , Células COS , Chlorocebus aethiops , Dimerización , Regulación de la Expresión Génica , Enfermedades Neurodegenerativas/etiología , Péptidos/metabolismo , Péptidos/fisiología , Estructura Terciaria de Proteína , Proteínas Represoras , Temperatura , Transfección
7.
J Mol Biol ; 343(1): 43-53, 2004 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-15381419

RESUMEN

Absence of the fragile X mental retardation protein (FMRP) causes fragile X syndrome, the most common form of hereditary mental retardation. FMRP is a mainly cytoplasmic protein thought to be involved in repression of translation, through a complex network of protein-protein and protein-RNA interactions. Most of the currently known protein partners of FMRP recognise the conserved N terminus of the protein. No interaction has yet been mapped to the highly charged, poorly conserved C terminus, so far thought to be involved in RNA recognition through an RGG motif. In the present study, we show that a two-hybrid bait containing residues 419-632 of human FMRP fishes out a protein that spans the sequence of the Ran-binding protein in the microtubule-organising centre (RanBPM/RanBP9). Specific interaction of RanBPM with FMRP was confirmed by in vivo and in vitro assays. In brain tissue sections, RanBPM is highly expressed in the neurons of cerebral cortex and the cerebellar purkinje cells, in a pattern similar to that described for FMRP. Sequence analysis shows that RanBPM is a multi-domain protein. The interaction with FMRP was mapped in a newly identified CRA motif present in the RanBPM C terminus. Our results suggest that the functional role of RanBPM binding is modulation of the RNA-binding properties of FMRP.


Asunto(s)
Microtúbulos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Estructura Terciaria de Proteína , Proteínas de Unión al ARN/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Células COS , Cerebelo/citología , Corteza Cerebral/citología , Chlorocebus aethiops , Secuencia Conservada , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Humanos , Discapacidad Intelectual , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Neuronas/metabolismo , Estructura Secundaria de Proteína , Células de Purkinje/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas Recombinantes de Fusión/metabolismo , Análisis de Secuencia de Proteína , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos
8.
J Mol Biol ; 344(4): 1021-35, 2004 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-15544810

RESUMEN

Expansion of the polyglutamine (polyQ) region in the protein ataxin-3 is associated with spinocerebellar ataxia type 3, an inherited neurodegenerative disorder that belongs to the family of polyQ diseases. Increasing evidence indicates that protein aggregation and fibre formation play an important role in these pathologies. In a previous study, we determined the domain architecture of ataxin-3, suggesting that it comprises a globular domain, named Josephin, and a more flexible C-terminal region, that includes the polyQ tract. Here, we have characterised for the first time the biophysical properties of the isolated Josephin motif, showing that it is an autonomously folded unit and that it has no significant interactions with the C-terminal region. Study of its thermodynamic stability indicates that Josephin has an intrinsic tendency to aggregate and forms temperature-induced fibrils similar to those described for expanded ataxin-3. We show that, under destabilising conditions, the behaviours of the isolated Josephin domain and ataxin-3 are extremely similar. Our data therefore strongly suggest that the stability and aggregation properties of non-expanded ataxin-3 are determined by those of the Josephin domain, which is sufficient to reproduce the behaviour of the full-length protein. Our data support a mechanism in which the thermodynamic stability of ataxin-3 is governed by the properties of the Josephin domain, but the presence of an expanded polyQ tract increases dramatically the protein's tendency to aggregate.


Asunto(s)
Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Péptidos/química , Péptidos/metabolismo , Ataxina-3 , Humanos , Enfermedad de Machado-Joseph/genética , Enfermedad de Machado-Joseph/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/ultraestructura , Proteínas Nucleares , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/ultraestructura , Desnaturalización Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Represoras , Termodinámica
9.
Front Mol Biosci ; 2: 2, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25988170

RESUMEN

Ataxin-3, the protein responsible for spinocerebellar ataxia type-3, is a cysteine protease that specifically cleaves poly-ubiquitin chains and participates in the ubiquitin proteasome pathway. The enzymatic activity resides in the N-terminal Josephin domain. An unusual feature of ataxin-3 is its low enzymatic activity especially for mono-ubiquitinated substrates and short ubiquitin chains. However, specific ubiquitination at lysine 117 in the Josephin domain activates ataxin-3 through an unknown mechanism. Here, we investigate the effects of K117 ubiquitination on the structure and enzymatic activity of the protein. We show that covalently linked ubiquitin rests on the Josephin domain, forming a compact globular moiety and occupying a ubiquitin binding site previously thought to be essential for substrate recognition. In doing so, ubiquitination enhances enzymatic activity by locking the enzyme in an activated state. Our results indicate that ubiquitin functions both as a substrate and as an allosteric regulatory factor. We provide a novel example in which a conformational switch controls the activity of an enzyme that mediates deubiquitination.

10.
FEBS Lett ; 549(1-3): 21-5, 2003 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-12914917

RESUMEN

Anomalous expansion of a polyglutamine (polyQ) tract in the protein ataxin-3 causes spinocerebellar ataxia type 3, an autosomal dominant neurodegenerative disease. Very little is known about the structure and the function of ataxin-3, although this information would undoubtedly help to understand why the expanded protein forms insoluble nuclear aggregates and causes neuronal cell death. With the aim of establishing the domain architecture of ataxin-3 and the role of the polyQ tract within the protein context, we have studied the human and murine orthologues using a combination of techniques, which range from limited proteolysis to circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopies. The two protein sequences share a highly conserved N-terminus and differ only in the length of the glutamine repeats and in the C-terminus. Our data conclusively indicate that ataxin-3 is composed by a structured N-terminal domain, followed by a flexible tail. Moreover, [(15)N]glutamine selectively labelled samples allowed us to have a direct insight by NMR into the structure of the polyQ region.


Asunto(s)
Proteínas del Tejido Nervioso/química , Secuencia de Aminoácidos , Animales , Ataxina-3 , Dicroismo Circular , Humanos , Ratones , Datos de Secuencia Molecular , Isótopos de Nitrógeno , Resonancia Magnética Nuclear Biomolecular , Proteínas Nucleares , Péptido Hidrolasas/metabolismo , Péptidos , Estructura Terciaria de Proteína , Proteínas Represoras , Alineación de Secuencia , Factores de Transcripción
11.
Biochimie ; 85(1-2): 189-94, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12765788

RESUMEN

Earlier work described the cloning of a gene from murine 3T3 cells encoding a cytoplasmic protein Chrp containing a cysteine- and histidine-rich motif characteristic of Zn-finger proteins. The interaction of Chrp with murine galectin-3 first became evident in a yeast two-hybrid screen, but it was also observed in co-precipitation experiments from 3T3 cell lysates. Here, the formation of equimolar complexes by murine Chrp and hamster galectin-3 is shown. Moreover, we found that Chrp binds to the carbohydrate-recognition domain (CRD) of hamster galectin-3 and not to the N-terminal domain carrying the proline- and glycine-rich repeats characteristic of galectin-3 and absent in other galectins. However, galectin-1 does not bind to Chrp, although its CRD is homologous to the galectin-3 CRD. Finally, we report that galectin-3, in a complex with Chrp, binds to laminin in surface plasmon resonance experiments with similar kinetics and affinity as it does in the free state. The formation of higher-order complexes containing these proteins and additional binding partners may be relevant to cytoplasmic functions involving galectin-3.


Asunto(s)
Galectina 3/química , Proteínas/química , Células 3T3 , Animales , Sitios de Unión , Metabolismo de los Hidratos de Carbono , Carbohidratos/química , Colagenasas , Citoplasma/química , Citoplasma/metabolismo , Galectina 1/química , Galectina 1/metabolismo , Galectina 3/metabolismo , Laminina/química , Ratones , Estructura Terciaria de Proteína , Proteínas/genética , Proteínas/metabolismo , Proteínas Recombinantes/química , Resonancia por Plasmón de Superficie
12.
Biomol NMR Assign ; 8(2): 325-7, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23853075

RESUMEN

Ataxin-1 is the protein responsible for the genetically-inherited neurodegenerative disease spinocerebellar ataxia type-1 linked to the expansion of a polyglutamine tract within the protein sequence. The AXH domain of ataxin-1 is essential for the protein to function as a transcriptional co-repressor and mediates the majority of the interactions of ataxin-1 with cellular partners, mainly transcriptional regulators. One of the best characterized ataxin-1 functional partners is Capicua (CIC), a transcriptional repressor involved in signalling pathways that regulate mammalian development, tumorigenesis and, through the interaction with ataxin-1, also neurodegeneration. Complex formation of ataxin-1 with CIC is important both for the function of the wild-type protein and for pathogenesis as transcriptional disregulation is observed since the early stages of the development of the disease. Here we report the (1)H, (13)C and (15)N backbone and side-chain chemical shift assignments of the human ataxin-1 AXH domain in complex with a CIC ligand-peptide.


Asunto(s)
Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Resonancia Magnética Nuclear Biomolecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Péptidos/metabolismo , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Ataxina-1 , Ataxinas , Humanos , Ligandos , Datos de Secuencia Molecular , Estructura Terciaria de Proteína
13.
PeerJ ; 2: e323, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24711972

RESUMEN

The neurodegenerative disease spinocerebellar ataxia type 1 (SCA1) is caused by aggregation and misfolding of the ataxin-1 protein. While the pathology correlates with mutations that lead to expansion of a polyglutamine tract in the protein, other regions contribute to the aggregation process as also non-expanded ataxin-1 is intrinsically aggregation-prone and forms nuclear foci in cell. Here, we have used a combined approach based on FRET analysis, confocal microscopy and in vitro techniques to map aggregation-prone regions other than polyglutamine and to establish the importance of dimerization in self-association/foci formation. Identification of aggregation-prone regions other than polyglutamine could greatly help the development of SCA1 treatment more specific than that based on targeting the low complexity polyglutamine region.

14.
PLoS One ; 8(10): e76456, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24155902

RESUMEN

A main challenge for structural biologists is to understand the mechanisms that discriminate between molecular interactions and determine function. Here, we show how partner recognition of the AXH domain of the transcriptional co-regulator ataxin-1 is fine-tuned by a subtle balance between self- and hetero-associations. Ataxin-1 is the protein responsible for the hereditary spinocerebellar ataxia type 1, a disease linked to protein aggregation and transcriptional dysregulation. Expansion of a polyglutamine tract is essential for ataxin-1 aggregation, but the sequence-wise distant AXH domain plays an important aggravating role in the process. The AXH domain is also a key element for non-aberrant function as it intervenes in interactions with multiple protein partners. Previous data have shown that AXH is dimeric in solution and forms a dimer of dimers when crystallized. By solving the structure of a complex of AXH with a peptide from the interacting transcriptional repressor CIC, we show that the dimer interface of AXH is displaced by the new interaction and that, when blocked by the CIC peptide AXH aggregation and misfolding are impaired. This is a unique example in which palindromic self- and hetero-interactions within a sequence with chameleon properties discriminate the partner. We propose a drug design strategy for the treatment of SCA1 that is based on the information gained from the AXH/CIC complex.


Asunto(s)
Diseño de Fármacos , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Mapeo de Interacción de Proteínas , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Ataxina-1 , Ataxinas , Cromatografía en Gel , Humanos , Espectroscopía de Resonancia Magnética , Modelos Biológicos , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/química , Proteínas Nucleares/química , Péptidos/química , Péptidos/metabolismo , Unión Proteica , Multimerización de Proteína , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Soluciones
15.
FEBS Open Bio ; 3: 453-8, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24251111

RESUMEN

Protein ubiquitination occurs through formation of an isopeptide bond between the C-terminal glycine of ubiquitin (Ub) and the ɛ-amino group of a substrate lysine residue. This post-translational modification, which occurs through the attachment of single and/or multiple copies of mono-ubiquitin and poly-ubiquitin chains, is involved in crucial cellular events such as protein degradation, cell-cycle regulation and DNA repair. The abnormal functioning of ubiquitin pathways is also implicated in the pathogenesis of several human diseases ranging from cancer to neurodegeneration. However, despite the undoubted biological importance, understanding the molecular basis of how ubiquitination regulates different pathways has up to now been strongly limited by the difficulty of producing the amounts of highly homogeneous samples that are needed for a structural characterization by X-ray crystallography and/or NMR. Here, we report on the production of milligrams of highly pure Josephin mono-ubiquitinated on lysine 117 through large scale in vitro enzymatic ubiquitination. Josephin is the catalytic domain of ataxin-3, a protein responsible for spinocerebellar ataxia type 3. Ataxin-3 is the first deubiquitinating enzyme (DUB) reported to be activated by mono-ubiquitination. We demonstrate that the samples produced with the described method are correctly folded and suitable for structural studies. The protocol allows facile selective labelling of the components. Our results provide an important proof-of-concept that may pave the way to new approaches to the in vitro study of ubiquitinated proteins.

16.
Sci Rep ; 2: 919, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23213356

RESUMEN

Anomalous expansion of a polymorphic tract in Ataxin-1 causes the autosomal dominant spinocerebellar ataxia type 1. In addition to polyglutamine expansion, requirements for development of pathology are phosphorylation of serine 776 in Ataxin-1 and nuclear localization of the protein. The phosphorylation state of serine 776 is also crucial for selection of the Ataxin-1 multiple partners. Here, we have used FRET for an in cell study of the interaction of Ataxin-1 with the spliceosome-associated U2AF65 and the adaptor 14-3-3 proteins. Using wild-type Ataxin-1 and Ser776 mutants to a phosphomimetic aspartate and to alanine, we show that U2AF65 binds Ataxin-1 in a Ser776 phosphorylation independent manner whereas 14-3-3 interacts with phosphorylated wild-type Ataxin-1 but not with the mutants. These results indicate that Ser776 acts as the molecular switch that discriminates between normal and aberrant function and that phosphomimetics is not a generally valid approach whose applicability should be carefully validated.


Asunto(s)
Proteínas 14-3-3/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Ribonucleoproteínas/metabolismo , Serina/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Animales , Ataxina-1 , Ataxinas , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Genes Reporteros , Humanos , Mutación/genética , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilación , Conformación Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Serina/química , Serina/genética , Factor de Empalme U2AF
17.
PLoS One ; 4(12): e8372, 2009 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-20037628

RESUMEN

Ataxin-1 (Atx1), a member of the polyglutamine (polyQ) expanded protein family, is responsible for spinocerebellar ataxia type 1. Requirements for developing the disease are polyQ expansion, nuclear localization and phosphorylation of S776. Using a combination of bioinformatics, cell and structural biology approaches, we have identified a UHM ligand motif (ULM), present in proteins associated with splicing, in the C-terminus of Atx1 and shown that Atx1 interacts with and influences the function of the splicing factor U2AF65 via this motif. ULM comprises S776 of Atx1 and overlaps with a nuclear localization signal and a 14-3-3 binding motif. We demonstrate that phosphorylation of S776 provides the molecular switch which discriminates between 14-3-3 and components of the spliceosome. We also show that an S776D Atx1 mutant previously designed to mimic phosphorylation is unsuitable for this aim because of the different chemical properties of the two groups. Our results indicate that Atx1 is part of a complex network of interactions with splicing factors and suggest that development of the pathology is the consequence of a competition of aggregation with native interactions. Studies of the interactions formed by non-expanded Atx1 thus provide valuable hints for understanding both the function of the non-pathologic protein and the causes of the disease.


Asunto(s)
Proteínas 14-3-3/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Fosfoserina/metabolismo , Ribonucleoproteínas/metabolismo , Empalme Alternativo/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Ataxina-1 , Ataxinas , Unión Competitiva , Calorimetría , Células HeLa , Humanos , Cinética , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas Nucleares/química , Péptidos/química , Fosfoproteínas/metabolismo , Fosforilación , Unión Proteica , Análisis de Secuencia de Proteína , Homología de Secuencia de Aminoácido , Factor de Empalme U2AF
18.
Biopolymers ; 91(12): 1203-14, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19382171

RESUMEN

Joseph-Machado is an incurable neurodegenerative disease caused by toxic aggregation of ataxin-3, a ubiquitin-specific cysteine protease, involved in the ubiquitin-proteasome pathway and known to bind poly-ubiquitin chains of four or more subunits. The enzymatic site resides in the N-terminal josephin domain of ataxin-3. We have characterized the ubiquitin-binding properties of josephin and showed that, unexpectedly, josephin contains two contiguous but distinct ubiquitin-binding sites. One is close to the enzymatic cleft and exploits an induced fit mechanism, which involves a flexible helical hairpin; the other overlaps with the site involved in recognition of HHR23B, a protein involved in delivering proteolytic substrates to the proteasome. To gain a structural description of the system, we had to overcome the nontrivial problem of dealing with a weak ternary complex. This was done by designing josephin mutants, which retain only one binding site and by characterizing the complexes with complementary computational and experimental techniques. The presence of two ubiquitin-binding sites explains how ataxin-3 binds poly-ubiquitin chains and provides new insights into the molecular mechanism of ubiquitin recognition.


Asunto(s)
Proteínas del Tejido Nervioso/química , Proteínas Nucleares/química , Estructura Terciaria de Proteína , Proteínas Represoras/química , Ubiquitina/química , Ataxina-3 , Sitios de Unión , Simulación por Computador , Humanos , Cinética , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Mutación , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Ubiquitina/metabolismo
19.
Hum Mol Genet ; 16(17): 2122-34, 2007 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-17599952

RESUMEN

Ataxin 1 (Atxn1) is a protein of unknown function associated with spinocerebellar ataxia type 1 (SCA1), a neurodegenerative disease of late onset with variable degrees of cerebellar ataxia, ophthalmoplegia and neuropathy. SCA1 is caused by the toxic effects triggered by an expanded polyglutamine (polyQ) within Atxn1 resulting in neurodegeneration in the cerebellum, brain stem and spinocerebellar tracts. To gain insights into Atxn1 function, we have analysed the cerebellar gene expression profiles by microarray analysis in Atxn1-null mice, and identified alterations in expression of genes regulated by Sp1-dependent transcription, including the dopamine receptor D2 (Drd2), retinoic acid/thyroid hormone and Wnt-signalling. Interestingly, Drd2 expression levels are reduced in both Atxn1-null and transgenic mice expressing a pathogenic human Atxn1 with an expanded polyglutamine in cerebellar Purkinje cells. Our co-transfection experiments in human neuroblastoma SH-SY5Y cells and luciferase assays provide evidence for transcriptional regulation of Drd2 by Atxn1 and its AXH module. We show that Atxn1 occupies at the Drd2 promoter in vivo, and interacts and functions synergistically with the zinc-finger transcription factor Sp1 to co-regulate Drd2 expression. The interaction and transcriptional effects are mediated by the AXH domain within Atxn1 and are abrogated by the expanded polyQ within Atxn1. Therefore, this study identifies novel molecular targets that are regulated by Atxn1 which might contribute to the motor deficits in SCA1, and provides new insights into the mechanisms by which Atxn1 co-regulates transcription.


Asunto(s)
Proteínas del Tejido Nervioso/fisiología , Proteínas Nucleares/fisiología , Receptores de Dopamina D2/genética , Animales , Ataxina-1 , Ataxinas , Cerebelo/metabolismo , Humanos , Masculino , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Regiones Promotoras Genéticas , Receptores de Dopamina D2/metabolismo , Factor de Transcripción Sp1/genética , Factor de Transcripción Sp1/metabolismo , Transcripción Genética , Transfección , Células Tumorales Cultivadas
20.
Exp Cell Res ; 312(9): 1463-74, 2006 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-16488411

RESUMEN

The tight skin (Tsk/+) mouse is a model for fibrotic disorders. The genetic defect in the Tsk/+ is an in-frame duplication between exons 17 and 40 of the fibrillin-1 gene which gives rise to a large transcript and protein. Mice homozygous for the mutation die in utero, whereas heterozygotes survive and spontaneously develop connective tissue disease. In this study, we generated hammerhead ribozymes directed against the mutant fibrillin-1 transcript. A partially mispairing ribozyme was the most effective vehicle to cleave the mutant transcript without undesired cleavage of wild type transcripts, as shown by cell-free RNA cleavage and cleavage in cell lines harboring the ribozyme, by RT-PCR, Northern and Western Blotting. Global gene expression profiling using oligonucleotide microarrays showed the expected reduction in fibrillin-1 mRNA, and down-regulation of several gene cohorts in ribozyme harboring TskR1 cells compared to Tsk/+ cells. Two of the functional clusters included genes regulating extracellular matrix such as connective tissue growth factor, serpine-1 (plasminogen activator inhibitor-1) and TIMP-1 and TIMP-3, and those involved in cytoskeletal organization and myofibroblast formation including calponins and transgelin. Ribozyme-mediated inhibition was confirmed by Western Blot and functional analysis using cell-reporter systems and remodeling of three dimensional collagen gels. Our results underline the therapeutic potential of hammerhead ribozymes in dominant negative defects and suggest that changes in microfibril architecture brought about by fibrillin-1 mutation lead to a complex disease phenotype.


Asunto(s)
Silenciador del Gen , Proteínas de Microfilamentos/genética , Mutación/genética , ARN Catalítico/metabolismo , Animales , Western Blotting , Células COS , Proteínas de Unión al Calcio/metabolismo , Moléculas de Adhesión Celular/genética , Chlorocebus aethiops , Colágeno/metabolismo , Factor de Crecimiento del Tejido Conjuntivo , Proteínas del Citoesqueleto/genética , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Fibrilina-1 , Fibrilinas , Fibroblastos/citología , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Perfilación de la Expresión Génica , Proteínas Inmediatas-Precoces/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Ratones , Ratones Mutantes , Proteínas de Microfilamentos/fisiología , Inhibidor 1 de Activador Plasminogénico/metabolismo , ARN Catalítico/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transfección , Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA