Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Viruses ; 16(1)2024 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-38257815

RESUMEN

The intracellular bacterium Wolbachia is increasingly being utilised in control programs to limit the spread of arboviruses by Aedes mosquitoes. Achieving a better understanding of how Wolbachia strains can reduce viral replication/spread could be important for the long-term success of such programs. Previous studies have indicated that for some strains of Wolbachia, perturbations in lipid metabolism and cholesterol storage are vital in Wolbachia-mediated antiviral activity against the flaviviruses dengue and Zika; however, it has not yet been examined whether arboviruses in the alphavirus group are affected in the same way. Here, using the reporters for the alphavirus Semliki Forest virus (SFV) in Aedes albopictus cells, we found that Wolbachia strains wMel, wAu and wAlbB blocked viral replication/translation early in infection and that storage of cholesterol in lipid droplets is not key to this inhibition. Another alphavirus, o'nyong nyong virus (ONNV), was tested in both Aedes albopictus cells and in vivo in stable, transinfected Aedes aegypti mosquito lines. The strains wMel, wAu and wAlbB show strong antiviral activity against ONNV both in vitro and in vivo. Again, 2-hydroxypropyl-ß-cyclodextrin (2HPCD) was not able to rescue ONNV replication in cell lines, suggesting that the release of stored cholesterol caused by wMel is not able to rescue blockage of ONNV. Taken together, this study shows that alphaviruses appear to be inhibited early in replication/translation and that there may be differences in how alphaviruses are inhibited by Wolbachia in comparison to flaviviruses.


Asunto(s)
Aedes , Alphavirus , Flavivirus , Wolbachia , Infección por el Virus Zika , Virus Zika , Animales , Colesterol , Antivirales/farmacología
2.
Nat Commun ; 15(1): 4906, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851803

RESUMEN

Various low-density lipoprotein receptors (LPRs) have been identified as entry factors for alphaviruses, and structures of the corresponding virion-receptor complexes have been determined. Here, we analyze the similarities and differences in the receptor binding modes of multiple alphaviruses to understand their ability to infect a wide range of hosts. We further discuss the challenges associated with the development of broad-spectrum treatment strategies against a diverse range of alphaviruses.


Asunto(s)
Alphavirus , Antivirales , Receptores de LDL , Internalización del Virus , Animales , Humanos , Alphavirus/efectos de los fármacos , Alphavirus/fisiología , Alphavirus/genética , Infecciones por Alphavirus/tratamiento farmacológico , Infecciones por Alphavirus/virología , Antivirales/uso terapéutico , Antivirales/farmacología , Unión Proteica , Receptores de LDL/metabolismo , Receptores de LDL/genética , Receptores Virales/metabolismo , Receptores Virales/química , Virión/metabolismo , Internalización del Virus/efectos de los fármacos
3.
mBio ; 15(8): e0099324, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-38953633

RESUMEN

Barmah Forest virus (BFV) is a mosquito-borne virus that causes arthralgia with accompanying rash, fever, and myalgia in humans. The virus is mainly found in Australia and has caused outbreaks associated with significant health concerns. As the sole representative of the Barmah Forest complex within the genus Alphavirus, BFV is not closely related genetically to other alphaviruses. Notably, basic knowledge of BFV molecular virology has not been well studied due to a lack of critical investigative tools such as an infectious clone. Here we describe the construction of an infectious BFV cDNA clone based on Genbank sequence and demonstrate that the clone-derived virus has in vitro and in vivo properties similar to naturally occurring virus, BFV field isolate 2193 (BFV2193-FI). A substitution in nsP4, V1911D, which was identified in the Genbank reference sequence, was found to inhibit virus rescue and replication. T1325P substitution in nsP2 selected during virus passaging was shown to be an adaptive mutation, compensating for the inhibitory effect of nsP4-V1911D. The two mutations were associated with changes in viral non-structural polyprotein processing and type I interferon (IFN) induction. Interestingly, a nuclear localization signal, active in mammalian but not mosquito cells, was identified in nsP3. A point mutation abolishing nsP3 nuclear localization attenuated BFV replication. This effect was more prominent in the presence of type I interferon signaling, suggesting nsP3 nuclear localization might be associated with IFN antagonism. Furthermore, abolishing nsP3 nuclear localization reduced virus replication in mice but did not significantly affect disease.IMPORTANCEBarmah Forest virus (BFV) is Australia's second most prevalent arbovirus, with approximately 1,000 cases reported annually. The clinical symptoms of BFV infection include rash, polyarthritis, arthralgia, and myalgia. As BFV is not closely related to other pathogenic alphaviruses or well-studied model viruses, our understanding of its molecular virology and mechanisms of pathogenesis is limited. There is also a lack of molecular tools essential for corresponding studies. Here we describe the construction of an infectious clone of BFV, variants harboring point mutations, and sequences encoding marker protein. In infected mammalian cells, nsP3 of BFV was located in the nuclei. This finding extends our understanding of the diverse mechanisms used by alphavirus replicase proteins to interact with host cells. Our novel observations highlight the complex synergy through which the viral replication machinery evolves to correct mutation errors within the viral genome.


Asunto(s)
Infecciones por Alphavirus , Alphavirus , Genoma Viral , Proteínas no Estructurales Virales , Replicación Viral , Replicación Viral/genética , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Animales , Alphavirus/genética , Alphavirus/patogenicidad , Ratones , Infecciones por Alphavirus/virología , Genoma Viral/genética , Línea Celular , Humanos , Australia
4.
mBio ; 15(6): e0042024, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38700353

RESUMEN

Chikungunya virus (CHIKV) is an enveloped, positive-sense RNA virus that has re-emerged to cause millions of human infections worldwide. In humans, acute CHIKV infection causes fever and severe muscle and joint pain. Chronic and debilitating arthritis and joint pain can persist for months to years. To date, there are no approved antivirals against CHIKV. Recently, the ribonucleoside analog 4'-fluorouridine (4'-FlU) was reported as a highly potent orally available inhibitor of SARS-CoV-2, respiratory syncytial virus, and influenza virus replication. In this study, we assessed 4'-FlU's potency and breadth of inhibition against a panel of alphaviruses including CHIKV, and found that it broadly suppressed alphavirus production in cell culture. 4'-FlU acted on the viral RNA replication step, and the first 4 hours post-infection were the critical time for its antiviral effect. In vitro replication assays identified nsP4 as the target of inhibition. In vivo, treatment with 4'-FlU reduced disease signs, inflammatory responses, and viral tissue burden in mouse models of CHIKV and Mayaro virus infection. Treatment initiated at 2 hours post-infection was most effective; however, treatment initiated as late as 24-48 hours post-infection produced measurable antiviral effects in the CHIKV mouse model. 4'-FlU showed effective oral delivery in our mouse model and resulted in the accumulation of both 4'-FlU and its bioactive triphosphate form in tissues relevant to arthritogenic alphavirus pathogenesis. Together, our data indicate that 4'-FlU inhibits CHIKV infection in vitro and in vivo and is a promising oral therapeutic candidate against CHIKV infection.IMPORTANCEAlphaviruses including chikungunya virus (CHIKV) are mosquito-borne positive-strand RNA viruses that can cause various diseases in humans. Although compounds that inhibit CHIKV and other alphaviruses have been identified in vitro, there are no licensed antivirals against CHIKV. Here, we investigated a ribonucleoside analog, 4'-fluorouridine (4'-FlU), and demonstrated that it inhibited infectious virus production by several alphaviruses in vitro and reduced virus burden in mouse models of CHIKV and Mayaro virus infection. Our studies also indicated that 4'-FlU treatment reduced CHIKV-induced footpad swelling and reduced the production of pro-inflammatory cytokines. Inhibition in the mouse model correlated with effective oral delivery of 4'-FlU and accumulation of both 4'-FlU and its bioactive form in relevant tissues. In summary, 4'-FlU exhibits potential as a novel anti-alphavirus agent targeting the replication of viral RNA.


Asunto(s)
Alphavirus , Antivirales , Virus Chikungunya , Replicación Viral , Replicación Viral/efectos de los fármacos , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Ratones , Virus Chikungunya/efectos de los fármacos , Virus Chikungunya/fisiología , Alphavirus/efectos de los fármacos , Alphavirus/fisiología , Uridina/análogos & derivados , Uridina/farmacología , Humanos , Fiebre Chikungunya/tratamiento farmacológico , Fiebre Chikungunya/virología , Modelos Animales de Enfermedad , Línea Celular , Chlorocebus aethiops , Femenino , Células Vero
5.
iScience ; 27(6): 109835, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38799576

RESUMEN

Virucidal filter materials were prepared by electrospinning a solution of 28 wt % poly(vinylidene difluoride) in N,N-dimethylacetamide without and with the addition of 0.25 wt %, 0.75 wt %, 2.0 wt %, or 3.5 wt % Cu(NO3)2 · 2.5H2O as virucidal agent. The fabricated materials had a uniform and defect free fibrous structure and even distribution of copper nanoclusters. X-ray diffraction analysis showed that during the electrospinning process, Cu(NO3)2 · 2.5H2O changed into Cu2(NO3)(OH)3. Electrospun filter materials obtained by electrospinning were essentially macroporous. Smaller pores of copper nanoclusters containing materials resulted in higher particle filtration than those without copper nanoclusters. Electrospun filter material fabricated with the addition of 2.0 wt % and 3.5 wt % of Cu(NO3)2 · 2.5H2O in a spinning solution showed significant virucidal activity, and there was 2.5 ± 0.35 and 3.2 ± 0.30 logarithmic reduction in the concentration of infectious SARS-CoV-2 within 12 h, respectively. The electrospun filter materials were stable as they retained virucidal activity for three months.

6.
Nat Commun ; 15(1): 622, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245515

RESUMEN

Alphaviruses are arboviruses transmitted by mosquitoes and are pathogenic to humans and livestock, causing a substantial public health burden. So far, several receptors have been identified for alphavirus entry; however, they cannot explain the broad host range and tissue tropism of certain alphaviruses, such as Getah virus (GETV), indicating the existence of additional receptors. Here we identify the evolutionarily conserved low-density lipoprotein receptor (LDLR) as a new cell entry factor for GETV, Semliki Forest virus (SFV), Ross River virus (RRV) and Bebaru virus (BEBV). Ectopic expression of LDLR facilitates cellular binding and internalization of GETV, which is mediated by the interaction between the E2-E1 spike of GETV and the ligand-binding domain (LBD) of LDLR. Antibodies against LBD block GETV infection in cultured cells. In addition, the GST-LBD fusion protein inhibits GETV infection both in vitro and in vivo. Notably, we identify the key amino acids in LDLR-LBD that played a crucial role in viral entry; specific mutations in the CR4 and CR5 domain of LDLR-LBD reduce viral entry to cells by more than 20-fold. These findings suggest that targeting the LDLR-LBD could be a potential strategy for the development of antivirals against multiple alphaviruses.


Asunto(s)
Infecciones por Alphavirus , Alphavirus , Culicidae , Animales , Humanos , Alphavirus/genética , Internalización del Virus , Virus de los Bosques Semliki/genética , Virus de los Bosques Semliki/metabolismo , Infecciones por Alphavirus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA