Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biophys J ; 117(8): 1467-1475, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31542223

RESUMEN

Mitral valve diseases affect ∼3% of the population and are the most common reasons for valvular surgery because no drug-based treatments exist. Inheritable genetic mutations have now been established as the cause of mitral valve insufficiency, and four different missense mutations in the filamin A gene (FLNA) have been found in patients suffering from nonsyndromic mitral valve dysplasia (MVD). The filamin A (FLNA) protein is expressed, in particular, in endocardial endothelia during fetal valve morphogenesis and is key in cardiac development. The FLNA-MVD-causing mutations are clustered in the N-terminal region of FLNA. How the mutations in FLNA modify its structure and function has mostly remained elusive. In this study, using NMR spectroscopy and interaction assays, we investigated FLNA-MVD-causing V711D and H743P mutations. Our results clearly indicated that both mutations almost completely destroyed the folding of the FLNA5 domain, where the mutation is located, and also affect the folding of the neighboring FLNA4 domain. The structure of the neighboring FLNA6 domain was not affected by the mutations. These mutations also completely abolish FLNA's interactions with protein tyrosine phosphatase nonreceptor type 12, which has been suggested to contribute to the pathogenesis of FLNA-MVD. Taken together, our results provide an essential structural and molecular framework for understanding the molecular bases of FLNA-MVD, which is crucial for the development of new therapies to replace surgery.


Asunto(s)
Filaminas/química , Prolapso de la Válvula Mitral/genética , Mutación Missense , Pliegue de Proteína , Sitios de Unión , Filaminas/genética , Filaminas/metabolismo , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Proteína Tirosina Fosfatasa no Receptora Tipo 12/metabolismo
2.
Eur Heart J ; 39(15): 1269-1277, 2018 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-29020406

RESUMEN

Aims: Filamin-A (FLNA) was identified as the first gene of non-syndromic mitral valve dystrophy (FLNA-MVD). We aimed to assess the phenotype of FLNA-MVD and its impact on prognosis. Methods and results: We investigated the disease in 246 subjects (72 mutated) from four FLNA-MVD families harbouring three different FLNA mutations. Phenotype was characterized by a comprehensive echocardiography focusing on mitral valve apparatus in comparison with control relatives. In this X-linked disease valves lesions were severe in men and moderate in women. Most men had classical features of mitral valve prolapse (MVP), but without chordal rupture. By contrast to regular MVP, mitral leaflet motion was clearly restricted in diastole and papillary muscles position was closer to mitral annulus. Valvular abnormalities were similar in the four families, in adults and young patients from early childhood suggestive of a developmental disease. In addition, mitral valve lesions worsened over time as encountered in degenerative conditions. Polyvalvular involvement was frequent in males and non-diagnostic forms frequent in females. Overall survival was moderately impaired in men (P = 0.011). Cardiac surgery rate (mainly valvular) was increased (33.3 ± 9.8 vs. 5.0 ± 4.9%, P < 0.0001; hazard ratio 10.5 [95% confidence interval: 2.9-37.9]) owing mainly to a lifetime increased risk in men (76.8 ± 14.1 vs. 9.1 ± 8.7%, P < 0.0001). Conclusion: FLNA-MVD is a developmental and degenerative disease with complex phenotypic expression which can influence patient management. FLNA-MVD has unique features with both MVP and paradoxical restricted motion in diastole, sub-valvular mitral apparatus impairment and polyvalvular lesions in males. FLNA-MVD conveys a substantial lifetime risk of valve surgery in men.


Asunto(s)
Filaminas/genética , Prolapso de la Válvula Mitral/genética , Prolapso de la Válvula Mitral/patología , Válvula Mitral/patología , Adolescente , Adulto , Ecocardiografía , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Válvula Mitral/diagnóstico por imagen , Mutación/genética , Fenotipo , Pronóstico , Estudios Retrospectivos , Factores de Riesgo , Adulto Joven
3.
Biochim Biophys Acta Mol Cell Res ; 1864(7): 1142-1152, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28322931

RESUMEN

The GC-rich Binding Factor 2/Leucine Rich Repeat in the Flightless 1 Interaction Protein 1 gene (GCF2/LRRFIP1) is predicted to be alternatively spliced in five different isoforms. Although important peptide sequence differences are expected to result from this alternative splicing, to date, only the gene transcription regulator properties of LRRFIP1-Iso5 were unveiled. Based on molecular, cellular and biochemical data, we show here that the five isoforms define two molecular entities with different expression profiles in human tissues, subcellular localizations, oligomerization properties and transcription enhancer properties of the canonical Wnt pathway. We demonstrated that LRRFIP1-Iso3, -4 and -5, which share over 80% sequence identity, are primarily located in the cell cytoplasm and form homo and hetero-multimers between each other. In contrast, LRRFIP1-Iso1 and -2 are primarily located in the cell nucleus in part thanks to their shared C-terminal domain. Furthermore, we showed that LRRFIP1-Iso1 is preferentially expressed in the myocardium and skeletal muscle. Using the in vitro Topflash reporter assay we revealed that among LRRFIP1 isoforms, LRRFIP1-Iso1 is the strongest enhancer of the ß-catenin Wnt canonical transcription pathway thanks to a specific N-terminal domain harboring two critical tryptophan residues (W76, 82). In addition, we showed that the Wnt enhancer properties of LRRFIP1-Iso1 depend on its homo-dimerisation which is governed by its specific coiled coil domain. Together our study identified LRRFIP1-Iso1 as a critical regulator of the Wnt canonical pathway with a potential role in myocyte differentiation and myogenesis.


Asunto(s)
Proteínas de Unión al ARN/metabolismo , Vía de Señalización Wnt , Empalme Alternativo , Animales , Células Cultivadas , Células HEK293 , Humanos , Masculino , Ratones , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Dominios Proteicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Ratas , Ratas Sprague-Dawley , Proteínas Wnt/genética , Proteínas Wnt/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
4.
Haematologica ; 103(11): 1889-1898, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-29976743

RESUMEN

The safety of obinutuzumab, alone or with chemotherapy, was studied in a non-randomized, open-label, non-comparative, phase IIIb study (GREEN) in previously untreated or relapsed/refractory chronic lymphocytic leukemia. Patients received obinutuzumab 1000 mg alone or with chemotherapy (investigator's choice of fludarabine-cyclophosphamide for fit patients, chlorambucil for unfit patients, or bendamustine for any patient) on days 1, 8 and 15 of cycle 1, and day 1 of cycles 2-6 (28-day cycles), with the cycle 1/day 1 dose administered over two days. The primary end point was safety/tolerability. Between October 2013 and March 2016, 972 patients were enrolled and 971 treated (126 with obinutuzumab monotherapy, 193 with obinutuzumab-fludarabine-cyclophosphamide, 114 with obinutuzumab-chlorambucil, and 538 with obinutuzumab-bendamustine). Grade ≥3 adverse events occurred in 80.3% of patients, and included neutropenia (49.9%), thrombocytopenia (16.4%), anemia (9.6%), and pneumonia (9.0%); rates were similar in first-line and relapsed/refractory patients, and in first-line fit and unfit patients. Using expanded definitions, infusion-related reactions were observed in 65.4% of patients (grade ≥3, 19.9%; mainly seen during the first obinutuzumab infusion), tumor lysis syndrome in 6.4% [clinical and laboratory; highest incidence with obinutuzumab-bendamustine (9.3%)], and infections in 53.7% (grade ≥3, 20.1%). Serious and fatal adverse events were seen in 53.1% and 7.3% of patients, respectively. In first-line patients, overall response rates at three months post treatment exceeded 80% for all obinutuzumab-chemotherapy combinations. In the largest trial of obinutuzumab to date, toxicities were generally manageable in this broad patient population. Safety data were consistent with previous reports, and response rates were high. (clinicaltrials.gov identifier: 01905943).


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales Humanizados/administración & dosificación , Anticuerpos Monoclonales Humanizados/efectos adversos , Clorhidrato de Bendamustina/administración & dosificación , Clorhidrato de Bendamustina/efectos adversos , Clorambucilo/administración & dosificación , Clorambucilo/efectos adversos , Ciclofosfamida/administración & dosificación , Ciclofosfamida/efectos adversos , Femenino , Humanos , Leucemia Linfocítica Crónica de Células B/patología , Masculino , Persona de Mediana Edad , Vidarabina/administración & dosificación , Vidarabina/efectos adversos , Vidarabina/análogos & derivados
5.
Purinergic Signal ; 14(1): 73-82, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29236227

RESUMEN

Ectonucleoside triphosphate diphosphohydrolase-1, the major vascular/immune ectonucleotidase, exerts anti-thrombotic and immunomodulatory actions by hydrolyzing extracellular nucleotides (danger signals). Hypertension is characterized by vascular wall remodeling, endothelial dysfunction, and immune infiltration. Here our aim was to investigate the impact of arterial hypertension on CD39 expression and activity in mice. Arterial expression of CD39 was determined by reverse transcription quantitative real-time PCR in experimental models of hypertension, including angiotensin II (AngII)-treated mice (1 mg/kg/day, 21 days), deoxycorticosterone acetate-salt mice (1% salt and uninephrectomy, 21 days), and spontaneously hypertensive rats. A decrease in CD39 expression occurred in the resistance and conductance arteries of hypertensive animals with no effect on lymphoid organs. In AngII-treated mice, a decrease in CD39 protein levels (Western blot) was corroborated by reduced arterial nucleotidase activity, as evaluated by fluorescent (etheno)-ADP hydrolysis. Moreover, serum-soluble ADPase activity, supported by CD39, was significantly decreased in AngII-treated mice. Experiments were conducted in vitro on vascular cells to determine the elements underlying this downregulation. We found that CD39 transcription was reduced by proinflammatory cytokines interleukin (IL)-1ß and tumor necrosis factor alpha on vascular smooth muscle cells and by IL-6 and anti-inflammatory and profibrotic cytokine transforming growth factor beta 1 on endothelial cells. In addition, CD39 expression was downregulated by mechanical stretch on vascular cells. Arterial expression and activity of CD39 were decreased in hypertension as a result of both a proinflammatory environment and mechanical strain exerted on vascular cells. Reduced ectonucleotidase activity may alter the vascular condition, thus enhancing arterial damage, remodeling, or thrombotic events.


Asunto(s)
Antígenos CD/biosíntesis , Apirasa/biosíntesis , Arterias/metabolismo , Hipertensión/metabolismo , Animales , Células Endoteliales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos del Músculo Liso/metabolismo
6.
Arterioscler Thromb Vasc Biol ; 33(2): 339-46, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23264443

RESUMEN

OBJECTIVE: In resistance arteries, diameter adjustment in response to pressure changes depends on the vascular cytoskeleton integrity. Serum response factor (SRF) is a dispensable transcription factor for cellular growth, but its role remains unknown in resistance arteries. We hypothesized that SRF is required for appropriate microvascular contraction. METHODS AND RESULTS: We used mice in which SRF was specifically deleted in smooth muscle or endothelial cells, and their control. Myogenic tone and pharmacological contraction was determined in resistance arteries. mRNA and protein expression were assessed by quantitative real-time PCR (qRT-PCR) and Western blot. Actin polymerization was determined by confocal microscopy. Stress-activated channel activity was measured by patch clamp. Myogenic tone developing in response to pressure was dramatically decreased by SRF deletion (5.9±2.3%) compared with control (16.3±3.2%). This defect was accompanied by decreases in actin polymerization, filamin A, myosin light chain kinase and myosin light chain expression level, and stress-activated channel activity and sensitivity in response to pressure. Contractions induced by phenylephrine or U46619 were not modified, despite a higher sensitivity to p38 blockade; this highlights a compensatory pathway, allowing normal receptor-dependent contraction. CONCLUSIONS: This study shows for the first time that SRF has a major part to play in the control of local blood flow via its central role in pressure-induced myogenic tone in resistance arteries.


Asunto(s)
Presión Arterial , Músculo Liso Vascular/metabolismo , Factor de Respuesta Sérica/metabolismo , Cola (estructura animal)/irrigación sanguínea , Resistencia Vascular , Vasodilatación , Actinas/metabolismo , Animales , Presión Arterial/efectos de los fármacos , Arterias/metabolismo , Western Blotting , Señalización del Calcio , Proteínas Contráctiles/metabolismo , Relación Dosis-Respuesta a Droga , Filaminas , Regulación de la Expresión Génica , Masculino , Mecanotransducción Celular , Potenciales de la Membrana , Ratones , Ratones Noqueados , Proteínas de Microfilamentos/metabolismo , Microscopía Confocal , Músculo Liso Vascular/efectos de los fármacos , Miografía , Cadenas Ligeras de Miosina/metabolismo , Quinasa de Cadena Ligera de Miosina/metabolismo , Técnicas de Placa-Clamp , Inhibidores de Proteínas Quinasas/farmacología , ARN Mensajero/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factor de Respuesta Sérica/deficiencia , Factor de Respuesta Sérica/genética , Factores de Tiempo , Resistencia Vascular/efectos de los fármacos , Vasoconstricción/efectos de los fármacos , Vasoconstrictores/farmacología , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
7.
Heart ; 110(9): 666-674, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38148157

RESUMEN

OBJECTIVE: Variants in the FLNA gene have been associated with mitral valve dystrophy (MVD), and even polyvalvular disease has been reported. This study aimed to analyse the aortic valve and root involvement in FLNA-MVD families and its impact on outcomes. METHODS: 262 subjects (37 (18-53) years, 140 male, 79 carriers: FLNA+) from 4 FLNA-MVD families were included. Echocardiography was performed in 185 patients and histological analysis in 3 explanted aortic valves. The outcomes were defined as aortic valve surgery or all-cause mortality. RESULTS: Aortic valve alterations were found in 58% of FLNA+ compared with 6% of FLNA- (p<0.001). 9 (13.4%) FLNA+ had bicuspid aortic valve compared with 4 (3.4%) FLNA- (p=0.03). Overall, the transvalvular mean gradient was slightly increased in FLNA+ (4.8 (4.1-6.1) vs 4.0 (2.9-4.9) mm Hg, p=0.02). The sinuses of Valsalva and sinotubular junction diameters were enlarged in FLNA+ subjects (all p<0.05). 8 FLNA+ patients underwent aortic valve surgery (0 in relatives; p<0.001). Myxomatous remodelling with an infiltration of immune cells was observed. Overall survival was similar between FLNA+ versus FLNA- subjects (86±5% vs 85±6%, p=0.36). There was no statistical evidence for an interaction between genetic status and sex (p=0.15), but the survival tended to be impaired in FLNA+ men (p=0.06) whereas not in women (p=0.71). CONCLUSION: The patients with FLNA variants present frequent aortic valve disease and worse outcomes. Bicuspid aortic valve is more frequent in patients carrying the FLNA-MVD variants. These unique features should be factored into the management of patients with dystrophic and/or bicuspid aortic valve.


Asunto(s)
Enfermedad de la Válvula Aórtica Bicúspide , Enfermedades de las Válvulas Cardíacas , Cardiopatía Reumática , Femenino , Humanos , Masculino , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/cirugía , Válvula Aórtica/patología , Filaminas/genética , Enfermedades de las Válvulas Cardíacas/diagnóstico por imagen , Enfermedades de las Válvulas Cardíacas/genética , Enfermedades de las Válvulas Cardíacas/cirugía
8.
Front Cardiovasc Med ; 10: 1077788, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36873395

RESUMEN

Mitral valve prolapse (MVP) is a common condition affecting 2-3% of the general population, and the most complex form of valve pathology, with a complication rate up to 10-15% per year in advanced stages. Complications include mitral regurgitation which can lead to heart failure and atrial fibrillation, but also life-threatening ventricular arrhythmia and cardiovascular death. Sudden death has been recently brought to the forefront of MVP disease, increasing the complexity of management and suggesting that MVP condition is not properly understood. MVP can occur as part of syndromic conditions such as Marfan syndrome, but the most common form is non-syndromic, isolated or familial. Although a specific X-linked form of MVP was initially identified, autosomal dominant inheritance appears to be the primary mode of transmission. MVP can be stratified into myxomatous degeneration (Barlow), fibroelastic deficiency, and Filamin A-related MVP. While FED is still considered a degenerative disease associated with aging, myxomatous MVP and FlnA-MVP are recognized as familial pathologies. Deciphering genetic defects associated to MVP is still a work in progress; although FLNA, DCHS1, and DZIP1 have been identified as causative genes in myxomatous forms of MVP thanks to familial approaches, they explain only a small proportion of MVP. In addition, genome-wide association studies have revealed the important role of common variants in the development of MVP, in agreement with the high prevalence of this condition in the population. Furthermore, a potential genetic link between MVP and ventricular arrhythmia or a specific type of cardiomyopathy is considered. Animal models that allow to advance in the genetic and pathophysiological knowledge of MVP, and in particular those that can be easily manipulated to express a genetic defect identified in humans are detailed. Corroborated by genetic data and animal models, the main pathophysiological pathways of MVP are briefly addressed. Finally, genetic counseling is considered in the context of MVP.

9.
Cardiovasc Res ; 119(3): 759-771, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-36001550

RESUMEN

AIMS: Degenerative mitral valve dystrophy (MVD) leading to mitral valve prolapse is the most frequent form of MV disease, and there is currently no pharmacological treatment available. The limited understanding of the pathophysiological mechanisms leading to MVD limits our ability to identify therapeutic targets. This study aimed to reveal the main pathophysiological pathways involved in MVD via the multimodality imaging and transcriptomic analysis of the new and unique knock-in (KI) rat model for the FilaminA-P637Q (FlnA-P637Q) mutation associated-MVD. METHODS AND RESULTS: Wild-type (WT) and KI rats were evaluated morphologically, functionally, and histologically between 3-week-old and 3-to-6-month-old based on Doppler echocardiography, 3D micro-computed tomography (microCT), and standard histology. RNA-sequencing and Assay for Transposase-Accessible Chromatin (ATAC-seq) were performed on 3-week-old WT and KI mitral valves and valvular cells, respectively, to highlight the main signalling pathways associated with MVD. Echocardiographic exploration confirmed MV elongation (2.0 ± 0.1 mm vs. 1.8 ± 0.1, P = 0.001), as well as MV thickening and prolapse in KI animals compared to WT at 3 weeks. 3D MV volume quantified by microCT was significantly increased in KI animals (+58% vs. WT, P = 0.02). Histological analyses revealed a myxomatous remodelling in KI MV characterized by proteoglycans accumulation. A persistent phenotype was observed in adult KI rats. Signalling pathways related to extracellular matrix homeostasis, response to molecular stress, epithelial cell migration, endothelial to mesenchymal transition, chemotaxis and immune cell migration, were identified based on RNA-seq analysis. ATAC-seq analysis points to the critical role of transforming growth factor-ß and inflammation in the disease. CONCLUSION: The KI FlnA-P637Q rat model mimics human myxomatous MVD, offering a unique opportunity to decipher pathophysiological mechanisms related to this disease. Extracellular matrix organization, epithelial cell migration, response to mechanical stress, and a central contribution of immune cells are highlighted as the main signalling pathways leading to myxomatous MVD. Our findings pave the road to decipher underlying molecular mechanisms and the specific role of distinct cell populations in this context.


Asunto(s)
Prolapso de la Válvula Mitral , Válvula Mitral , Adulto , Humanos , Ratas , Animales , Lactante , Válvula Mitral/metabolismo , Filaminas/genética , Filaminas/metabolismo , Transcriptoma , Microtomografía por Rayos X , Prolapso de la Válvula Mitral/patología , Fenotipo
10.
J Proteome Res ; 11(12): 5994-6007, 2012 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-23092124

RESUMEN

Cardiac voltage-gated Na+ (Nav) channels are key determinants of action potential waveforms, refractoriness and propagation, and Nav1.5 is the main Nav pore-forming (α) subunit in the mammalian heart. Although direct phosphorylation of the Nav1.5 protein has been suggested to modulate various aspects of Nav channel physiology and pathophysiology, native Nav1.5 phosphorylation sites have not been identified. In the experiments here, a mass spectrometry (MS)-based proteomic approach was developed to identify native Nav1.5 phosphorylation sites directly. Using an anti-NavPAN antibody, Nav channel complexes were immunoprecipitated from adult mouse cardiac ventricles. The MS analyses revealed that this antibody immunoprecipitates several Nav α subunits in addition to Nav1.5, as well as several previously identified Nav channel associated/regulatory proteins. Label-free comparative and data-driven phosphoproteomic analyses of purified cardiac Nav1.5 protein identified 11 phosphorylation sites, 8 of which are novel. All the phosphorylation sites identified except one in the N-terminus are in the first intracellular linker loop, suggesting critical roles for this region in phosphorylation-dependent cardiac Nav channel regulation. Interestingly, commonly used prediction algorithms did not reliably predict these newly identified in situ phosphorylation sites. Taken together, the results presented provide the first in situ map of basal phosphorylation sites on the mouse cardiac Nav1.5 α subunit.


Asunto(s)
Ventrículos Cardíacos/metabolismo , Espectrometría de Masas/métodos , Canal de Sodio Activado por Voltaje NAV1.5/metabolismo , Algoritmos , Secuencia de Aminoácidos , Animales , Anticuerpos/metabolismo , Sitios de Unión , Cromatografía Liquida , Inmunoprecipitación , Ratones , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Fosfoproteínas/metabolismo , Fosforilación , Proteómica/métodos , Reproducibilidad de los Resultados
11.
J Biol Chem ; 286(1): 707-16, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-20940310

RESUMEN

Voltage-dependent potassium (Kv) channels are tetramers of six transmembrane domain (S1-S6) proteins. Crystallographic data demonstrate that the tetrameric pore (S5-S6) is surrounded by four voltage sensor domains (S1-S4). One key question remains: how do voltage sensors (S4) regulate pore gating? Previous mutagenesis data obtained on the Kv channel KCNQ1 highlighted the critical role of specific residues in both the S4-S5 linker (S4S5(L)) and S6 C terminus (S6(T)). From these data, we hypothesized that S4S5(L) behaves like a ligand specifically interacting with S6(T) and stabilizing the closed state. To test this hypothesis, we designed plasmid-encoded peptides corresponding to portions of S4S5(L) and S6(T) of the voltage-gated potassium channel KCNQ1 and evaluated their effects on the channel activity in the presence and absence of the ancillary subunit KCNE1. We showed that S4S5(L) peptides inhibit KCNQ1, in a reversible and state-dependent manner. S4S5(L) peptides also inhibited a voltage-independent KCNQ1 mutant. This inhibition was competitively prevented by a peptide mimicking S6(T), consistent with S4S5(L) binding to S6(T). Val(254) in S4S5(L) is known to contact Leu(353) in S6(T) when the channel is closed, and mutations of these residues alter the coupling between the two regions. The same mutations introduced in peptides altered their effects, further confirming S4S5(L) binding to S6(T). Our results suggest a mechanistic model in which S4S5(L) acts as a voltage-dependent ligand bound to its receptor on S6 at rest. This interaction locks the channel in a closed state. Upon plasma membrane depolarization, S4 pulls S4S5(L) away from S6(T), allowing channel opening.


Asunto(s)
Conductividad Eléctrica , Canal de Potasio KCNQ1/química , Canal de Potasio KCNQ1/metabolismo , Secuencia de Aminoácidos , Animales , Células COS , Membrana Celular/química , Membrana Celular/metabolismo , Chlorocebus aethiops , Activación del Canal Iónico , Canal de Potasio KCNQ1/genética , Cinética , Modelos Biológicos , Datos de Secuencia Molecular , Mutagénesis , Mutación , Fragmentos de Péptidos/metabolismo , Porosidad , Canales de Potasio con Entrada de Voltaje/química , Canales de Potasio con Entrada de Voltaje/metabolismo , Unión Proteica , Estabilidad Proteica , Estructura Terciaria de Proteína , Especificidad por Sustrato
12.
Biophys J ; 99(4): 1110-8, 2010 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-20712994

RESUMEN

Phosphatidylinositol-4,5-bisphosphate (PIP(2)) is a phospholipid that has been shown to modulate several ion channels, including some voltage-gated channels like Kv11.1 (hERG). From a biophysical perspective, the mechanisms underlying this regulation are not well characterized. From a physiological perspective, it is critical to establish whether the PIP(2) effect is within the physiological concentration range. Using the giant-patch configuration of the patch-clamp technique on COS-7 cells expressing hERG, we confirmed the activating effect of PIP(2). PIP(2) increased the hERG maximal current and concomitantly slowed deactivation. Regarding the molecular mechanism, these increased amplitude and slowed deactivation suggest that PIP(2) stabilizes the channel open state, as it does in KCNE1-KCNQ1. We used kinetic models of hERG to simulate the effects of the phosphoinositide. Simulations strengthened the hypothesis that PIP(2) is more likely stabilizing the channel open state than affecting the voltage sensors. From the physiological aspect, we established that the sensitivity of hERG to PIP(2) comes close to that of KCNE1-KCNQ1 channels, which lies in the range of physiological PIP(2) variations.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/química , Canales de Potasio Éter-A-Go-Go/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Fosfatidilinositol 4,5-Difosfato/farmacología , Animales , Células COS , Chlorocebus aethiops , Canal de Potasio ERG1 , Humanos , Canal de Potasio KCNQ1/metabolismo , Cinética , Magnesio/farmacología , Modelos Biológicos , Polilisina/farmacología , Canales de Potasio con Entrada de Voltaje/metabolismo , Conformación Proteica/efectos de los fármacos , Transfección
13.
J Mol Cell Cardiol ; 48(1): 37-44, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19683534

RESUMEN

The two components of the cardiac delayed rectifier current have been the subject of numerous studies since firstly described. This current controls the action potential duration and is highly regulated. After identification of the channel subunits underlying IKs, KCNQ1 associated with KCNE1, and IKr, HERG, their involvement in human cardiac channelopathies have provided various models allowing the description of the molecular mechanisms of the KCNQ1 and HERG channels trafficking, activity and regulation. More recently, studies have been focusing on the unveiling of different partners of the pore-forming proteins that contribute to their maturation, trafficking, activity and/or degradation, on one side, and on their respective expression in the heterogeneous cardiac tissue, on the other side. The aim of this review is to report and discuss the major works on IKs and IKr and the most recent ones that help to understand the precise function of these currents in the heart.


Asunto(s)
Miocardio/metabolismo , Miocardio/patología , Canales de Potasio con Entrada de Voltaje/metabolismo , Potasio/metabolismo , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo , Humanos , Canal de Potasio KCNQ1/genética , Canal de Potasio KCNQ1/metabolismo , Canales de Potasio con Entrada de Voltaje/genética
14.
J Physiol ; 588(Pt 18): 3471-83, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20660559

RESUMEN

KCNQ1 osmosensitivity is of physiological and pathophysiological relevance in epithelial and cardiac cells, but the mechanism involved remains elusive. In COS-7 cells expressing the KCNE1-KCNQ1 fusion protein, extracellular hypoosmolarity and hyperosmolarity modify the channel biophysical parameters. These changes are consistent with hypoosmolarity increasing the level of membrane phosphatidylinositol-4,5-bisphosphate (PIP(2)), which in turn upregulates KCNE1-KCNQ1 channels. We showed that increasing PIP(2) levels with a water-soluble PIP(2) analogue prevented channel upregulation in hypoosmotic condition, suggesting a variation of the channel-PIP(2) interaction during channel osmoregulation. Furthermore, we showed that polyamines and Mg(2+), already known to tonically inhibit KCNQ channels by screening PIP(2) negative charges, are involved in the osmoregulatory process. Indeed, intracellular Mg(2+) removal and polyamines chelation inhibited the channel osmoregulation. Thus, the dilution of those cations during cell swelling might decrease channel inhibition and explain the channel upregulation by hypoosmolarity. To support this idea, we quantified the role of Mg(2+) in the osmodependent channel activity. Direct measurement of intracellular [Mg(2+)] variations during osmotic changes and characterization of the channel Mg(2+) sensitivity showed that Mg(2+) participates significantly to the osmoregulation. Using intracellular solutions that mimic the variation of Mg(2+) and polyamines, we were able to recapitulate the current amplitude variations in response to extracellular osmolarity changes. Altogether, these results support the idea of a modulation of the channel-PIP(2) interactions by Mg(2+) and polyamines during cell volume changes. It is likely that this mechanism applies to other channels that are sensitive to both osmolarity and PIP(2).


Asunto(s)
Canal de Potasio KCNQ1/metabolismo , Magnesio/metabolismo , Poliaminas/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Equilibrio Hidroelectrolítico/fisiología , Animales , Fenómenos Biomecánicos , Células COS , Membrana Celular , Chlorocebus aethiops , Citoesqueleto , Regulación de la Expresión Génica/fisiología , Concentración Osmolar , Técnicas de Placa-Clamp , Fosfatidilinositol 4,5-Difosfato/metabolismo , Proteínas Recombinantes
15.
Circ Res ; 103(12): 1451-7, 2008 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-19008479

RESUMEN

Physical and emotional stress is accompanied by release of stress hormones such as the glucocorticoid cortisol. This hormone upregulates the serum- and glucocorticoid-inducible kinase (SGK)1, which in turn stimulates I(Ks), a slow delayed rectifier potassium current that mediates cardiac action potential repolarization. Mutations in I(Ks) channel alpha (KCNQ1, KvLQT1, Kv7.1) or beta (KCNE1, IsK, minK) subunits cause long QT syndrome (LQTS), an inherited cardiac arrhythmia associated with increased risk of sudden death. Together with the GTPases RAB5 and RAB11, SGK1 facilitates membrane recycling of KCNQ1 channels. Here, we show altered SGK1-dependent regulation of LQTS-associated mutant I(Ks) channels. Whereas some mutant KCNQ1 channels had reduced basal activity but were still activated by SGK1, currents mediated by KCNQ1(Y111C) or KCNQ1(L114P) were paradoxically reduced by SGK1. Heteromeric channels coassembled of wild-type KCNQ1 and the LQTS-associated KCNE1(D76N) mutant were similarly downregulated by SGK1 because of a disrupted RAB11-dependent recycling. Mutagenesis experiments indicate that stimulation of I(Ks) channels by SGK1 depends on residues H73, N75, D76, and P77 in KCNE1. Identification of the I(Ks) recycling pathway and its modulation by stress-stimulated SGK1 provides novel mechanistic insight into potentially fatal cardiac arrhythmias triggered by physical or psychological stress.


Asunto(s)
Endosomas/genética , Canal de Potasio KCNQ1/genética , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/metabolismo , Mutación/genética , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio con Entrada de Voltaje/genética , Proteínas de Xenopus/genética , Animales , Células COS , Chlorocebus aethiops , Endosomas/metabolismo , Femenino , Canal de Potasio KCNQ1/fisiología , Oocitos/metabolismo , Canales de Potasio de Rectificación Interna/fisiología , Canales de Potasio con Entrada de Voltaje/fisiología , Subunidades de Proteína/genética , Subunidades de Proteína/fisiología , Proteínas de Xenopus/fisiología , Xenopus laevis
16.
Leukemia ; 34(2): 441-450, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31455851

RESUMEN

GREEN (NCT01905943) is a nonrandomized, open-label, single-arm, phase 3b study investigating the safety and efficacy of obinutuzumab alone or in combination with chemotherapy in chronic lymphocytic leukemia (CLL). We report the preplanned subgroup analysis of 140 previously untreated, fit CLL patients who received obinutuzumab plus fludarabine and cyclophosphamide (G-FC). The primary endpoint was safety and tolerability. Efficacy was the secondary endpoint. Obinutuzumab 1000 mg was administered intravenously on Day (D)1 (dose split D1‒2), D8 and D15 of Cycle (C)1, and D1 of C2-6 (28-day cycles). Standard intravenous/oral doses of fludarabine and cyclophosphamide were administered on D1-3 of C1-6. Overall, 87.1% of patients experienced grade ≥ 3 adverse events (AEs), including neutropenia (67.1%) and thrombocytopenia (17.1%). Serious AEs were experienced by 42.1% of patients. Rates of grade ≥ 3 infusion-related reactions and infections were 19.3% and 15.7%, respectively. Overall response rate was observed in 90.0%, with 46.4% of patients achieving complete response (CR; including CR with incomplete marrow recovery). Minimal residual disease negativity rates were 64.3% in peripheral blood and 35.7% in bone marrow (intent-to-treat analysis). After a median observation time of 25.6 months, 2 year progression-free survival was 91%. Frontline G-FC represents a promising treatment option for fit patients with CLL.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Adulto , Anciano , Anticuerpos Monoclonales Humanizados/administración & dosificación , Ciclofosfamida/administración & dosificación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Supervivencia sin Progresión , Inducción de Remisión/métodos , Vidarabina/administración & dosificación , Vidarabina/análogos & derivados
17.
ACS Nano ; 14(10): 12962-12971, 2020 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-32966058

RESUMEN

The realization of high-performance nanoelectronics requires control of materials at the nanoscale. Methods to produce high quality epitaxial graphene (EG) nanostructures on silicon carbide are known. The next step is to grow van der Waals semiconductors on top of EG nanostructures. Hexagonal boron nitride (h-BN) is a wide bandgap semiconductor with a honeycomb lattice structure that matches that of graphene, making it ideally suited for graphene-based nanoelectronics. Here, we describe the preparation and characterization of multilayer h-BN grown epitaxially on EG using a migration-enhanced metalorganic vapor phase epitaxy process. As a result of the lateral epitaxial deposition (LED) mechanism, the grown h-BN/EG heterostructures have highly ordered epitaxial interfaces, as desired in order to preserve the transport properties of pristine graphene. Atomic scale structural and energetic details of the observed row-by-row growth mechanism of the two-dimensional (2D) epitaxial h-BN film are analyzed through first-principles simulations, demonstrating one-dimensional nucleation-free-energy-barrierless growth. This industrially relevant LED process can be applied to a wide variety of van der Waals materials.

18.
J Cell Mol Med ; 13(9B): 3703-12, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19438811

RESUMEN

Cell-based therapies have great potential for the treatment of cardiovascular diseases. Recently, using a transgenic mouse model Roell et al. reported that cardiac engraftment of connexin43 (Cx43)-overexpressing myoblasts in vivo prevents post-infarct arrhythmia, a common cause of death in patients following heart attack. We carried out a similar study but in a clinically relevant context via transplantation of autologous connexin43-overexpressing myoblasts in infarcted rats. Seven days after coronary ligation, rats were randomized into three groups: a control group injected with myoblasts, a null group injected with myoblasts transduced with an empty lentivirus vector (null) and a Cx43 group injected with myoblasts transduced with a lentivirus vector encoding connexin43. In contrast to Roell's report, arrhythmia occurrence was not statistically different between groups (58%, 64% and 48% for the control (n= 12), null (n= 14) and Cx43 (n= 23) groups, respectively, P= 0.92). Using ex vivo intramural monophasic action potential recordings synchronous electrical activity was observed between connexin43-overexpressing myoblasts and host cardiomyocytes, whereas such synchrony did not occur in the null-transduced group. This suggests that ex vivo connexin43 gene transfer and expression in myoblasts improved intercellular electrical coupling between myoblasts and cardiomyocytes. However, in our model such electrical coupling was not sufficient to decrease arrhythmia induction. Therefore, we would suggest a note of caution on the use of combined Cx43 gene and cell therapy to prevent post-infarct arrhythmias in heart failure patients.


Asunto(s)
Arritmias Cardíacas/patología , Conexina 43/biosíntesis , Regulación de la Expresión Génica , Ventrículos Cardíacos/metabolismo , Mioblastos Esqueléticos/citología , Potenciales de Acción , Animales , Modelos Animales de Enfermedad , Citometría de Flujo , Técnicas de Transferencia de Gen , Insuficiencia Cardíaca/patología , Masculino , Mioblastos Esqueléticos/metabolismo , Infarto del Miocardio/patología , Ratas , Ratas Wistar
19.
Prog Biophys Mol Biol ; 98(2-3): 230-7, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19041666

RESUMEN

Both gain- and loss-of-function mutations in the SCN5A gene, which encodes the alpha-subunit of the cardiac voltage-gated Na+ channel Na(v)1.5, are well established to underlie hereditary arrhythmic syndromes (cardiac channelopathies) such as the type 3 long QT syndrome, cardiac conduction diseases, Brugada syndrome, sick sinus syndrome, atrial standstill and numerous overlap syndromes. Although patch-clamp studies in heterologous expression systems have provided important information to understand the genotype-phenotype relationships of these diseases, they could not clarify how mutations can be responsible for such a large spectrum of diseases, the late age of onset or the progressiveness of some of them, and for the overlapping syndromes. Genetically modified mice rapidly appeared as promising tools for understanding the pathophysiological sequence of cardiac SCN5A-related channelopathies and several mouse models have been established. Here, we review the results obtained on these models that, for most of them, convincingly recapitulate the clinical phenotypes of the patients but that also have their own limitations. Mouse models turn out to be powerful tools to elucidate the pathophysiological mechanisms of SCN5A-related diseases and offer the opportunity to investigate the cellular consequences of SCN5A mutations such as the remodelling of other gene expression that might participate in the overall phenotype and explain some of the differences among patients. Finally, they also constitute useful tools for future studies addressing as yet unanswered questions, such as the role of genetic and environmental modifiers on cardiac conduction and repolarisation.


Asunto(s)
Arritmias Cardíacas/etiología , Canales de Sodio/fisiología , Animales , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Síndrome de Brugada/etiología , Síndrome de Brugada/genética , Síndrome de Brugada/fisiopatología , Modelos Animales de Enfermedad , Humanos , Síndrome de QT Prolongado/clasificación , Síndrome de QT Prolongado/etiología , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/fisiopatología , Ratones , Ratones Noqueados , Ratones Mutantes , Ratones Transgénicos , Proteínas Musculares/genética , Proteínas Musculares/fisiología , Mutación , Canal de Sodio Activado por Voltaje NAV1.5 , Canales de Sodio/deficiencia , Canales de Sodio/genética , Subunidad beta-1 de Canal de Sodio Activado por Voltaje
20.
Cardiovasc Res ; 79(3): 427-35, 2008 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-18390900

RESUMEN

AIMS: KCNQ1 (alias KvLQT1 or Kv7.1) and KCNE1 (alias IsK or minK) co-assemble to form the voltage-activated K(+) channel responsible for I(Ks)-a major repolarizing current in the human heart-and their dysfunction promotes cardiac arrhythmias. The channel is a component of larger macromolecular complexes containing known and undefined regulatory proteins. Thus, identification of proteins that modulate its biosynthesis, localization, activity, and/or degradation is of great interest from both a physiological and pathological point of view. METHODS AND RESULTS: Using a yeast two-hybrid screening, we detected a direct interaction between beta-tubulin and the KCNQ1 N-terminus. The interaction was confirmed by co-immunoprecipitation of beta-tubulin and KCNQ1 in transfected COS-7 cells and in guinea pig cardiomyocytes. Using immunocytochemistry, we also found that they co-localized in cardiomyocytes. We tested the effects of microtubule-disrupting and -stabilizing agents (colchicine and taxol, respectively) on the KCNQ1-KCNE1 channel activity in COS-7 cells by means of the permeabilized-patch configuration of the patch-clamp technique. None of these agents altered I(Ks). In addition, colchicine did not modify the current response to osmotic challenge. On the other hand, the I(Ks) response to protein kinase A (PKA)-mediated stimulation depended on microtubule polymerization in COS-7 cells and in cardiomyocytes. Strikingly, KCNQ1 channel and Yotiao phosphorylation by PKA-detected by phospho-specific antibodies-was maintained, as was the association of the two partners. CONCLUSION: We propose that the KCNQ1-KCNE1 channel directly interacts with microtubules and that this interaction plays a major role in coupling PKA-dependent phosphorylation of KCNQ1 with I(Ks) activation.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Canal de Potasio KCNQ1/metabolismo , Microtúbulos/metabolismo , Miocitos Cardíacos/enzimología , Tubulina (Proteína)/metabolismo , Proteínas de Anclaje a la Quinasa A/metabolismo , Potenciales de Acción , Animales , Células COS , Chlorocebus aethiops , Cobayas , Canal de Potasio KCNQ1/genética , Cinética , Masculino , Ratones , Microtúbulos/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Presión Osmótica , Fosforilación , Unión Proteica , Estructura Terciaria de Proteína , Transfección , Tubulina (Proteína)/genética , Moduladores de Tubulina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA