RESUMEN
The integration of mass spectrometry-based proteomics with next-generation DNA and RNA sequencing profiles tumors more comprehensively. Here this "proteogenomics" approach was applied to 122 treatment-naive primary breast cancers accrued to preserve post-translational modifications, including protein phosphorylation and acetylation. Proteogenomics challenged standard breast cancer diagnoses, provided detailed analysis of the ERBB2 amplicon, defined tumor subsets that could benefit from immune checkpoint therapy, and allowed more accurate assessment of Rb status for prediction of CDK4/6 inhibitor responsiveness. Phosphoproteomics profiles uncovered novel associations between tumor suppressor loss and targetable kinases. Acetylproteome analysis highlighted acetylation on key nuclear proteins involved in the DNA damage response and revealed cross-talk between cytoplasmic and mitochondrial acetylation and metabolism. Our results underscore the potential of proteogenomics for clinical investigation of breast cancer through more accurate annotation of targetable pathways and biological features of this remarkably heterogeneous malignancy.
Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinogénesis/genética , Carcinogénesis/patología , Terapia Molecular Dirigida , Proteogenómica , Desaminasas APOBEC/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/terapia , Estudios de Cohortes , Daño del ADN , Reparación del ADN , Femenino , Humanos , Inmunoterapia , Metabolómica , Persona de Mediana Edad , Mutagénesis/genética , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/metabolismo , Receptor ErbB-2/metabolismo , Proteína de Retinoblastoma/metabolismo , Microambiente Tumoral/inmunologíaRESUMEN
Gene expression in human tissue has primarily been studied on the transcriptional level, largely neglecting translational regulation. Here, we analyze the translatomes of 80 human hearts to identify new translation events and quantify the effect of translational regulation. We show extensive translational control of cardiac gene expression, which is orchestrated in a process-specific manner. Translation downstream of predicted disease-causing protein-truncating variants appears to be frequent, suggesting inefficient translation termination. We identify hundreds of previously undetected microproteins, expressed from lncRNAs and circRNAs, for which we validate the protein products in vivo. The translation of microproteins is not restricted to the heart and prominent in the translatomes of human kidney and liver. We associate these microproteins with diverse cellular processes and compartments and find that many locate to the mitochondria. Importantly, dozens of microproteins are translated from lncRNAs with well-characterized noncoding functions, indicating previously unrecognized biology.
Asunto(s)
Miocardio/metabolismo , Biosíntesis de Proteínas , Adolescente , Adulto , Anciano , Animales , Codón/genética , Femenino , Regulación de la Expresión Génica , Células HEK293 , Humanos , Lactante , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Sistemas de Lectura Abierta/genética , ARN Circular/genética , ARN Circular/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ribosomas/genética , Ribosomas/metabolismo , Adulto JovenRESUMEN
Venous thromboembolism (VTE) is a common, deadly disease with an increasing incidence despite preventive efforts. Clinical observations have associated elevated antibody concentrations or antibody-based therapies with thrombotic events. However, how antibodies contribute to thrombosis is unknown. Here, we show that reduced blood flow enabled immunoglobulin M (IgM) to bind to FcµR and the polymeric immunoglobulin receptor (pIgR), initiating endothelial activation and platelet recruitment. Subsequently, the procoagulant surface of activated platelets accommodated antigen- and FcγR-independent IgG deposition. This leads to classical complement activation, setting in motion a prothrombotic vicious circle. Key elements of this mechanism were present in humans in the setting of venous stasis as well as in the dysregulated immunothrombosis of COVID-19. This antibody-driven thrombosis can be prevented by pharmacologically targeting complement. Hence, our results uncover antibodies as previously unrecognized central regulators of thrombosis. These findings carry relevance for therapeutic application of antibodies and open innovative avenues to target thrombosis without compromising hemostasis.
Asunto(s)
Plaquetas , COVID-19 , Activación de Complemento , Inmunoglobulina M , Trombosis , Humanos , Trombosis/inmunología , Animales , Inmunoglobulina M/inmunología , Activación de Complemento/inmunología , Ratones , Plaquetas/inmunología , Plaquetas/metabolismo , COVID-19/inmunología , COVID-19/complicaciones , SARS-CoV-2/inmunología , Proteínas del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/metabolismo , Activación Plaquetaria/inmunología , Inmunoglobulina G/inmunología , MasculinoRESUMEN
To better understand the gene regulatory mechanisms that program developmental processes, we carried out simultaneous genome-wide measurements of mRNA, translation, and protein through meiotic differentiation in budding yeast. Surprisingly, we observed that the levels of several hundred mRNAs are anti-correlated with their corresponding protein products. We show that rather than arising from canonical forms of gene regulatory control, the regulation of at least 380 such cases, or over 8% of all measured genes, involves temporally regulated switching between production of a canonical, translatable transcript and a 5' extended isoform that is not efficiently translated into protein. By this pervasive mechanism for the modulation of protein levels through a natural developmental program, a single transcription factor can coordinately activate and repress protein synthesis for distinct sets of genes. The distinction is not based on whether or not an mRNA is induced but rather on the type of transcript produced.
Asunto(s)
Meiosis/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Modelos Biológicos , Anotación de Secuencia Molecular , Biosíntesis de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteoma/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/metabolismoRESUMEN
All species continuously evolve short open reading frames (sORFs) that can be templated for protein synthesis and may provide raw materials for evolutionary adaptation. We analyzed the evolutionary origins of 7,264 recently cataloged human sORFs and found that most were evolutionarily young and had emerged de novo. We additionally identified 221 previously missed sORFs potentially translated into peptides of up to 15 amino acids-all of which are smaller than the smallest human microprotein annotated to date. To investigate the bioactivity of sORF-encoded small peptides and young microproteins, we subjected 266 candidates to a mass-spectrometry-based interactome screen with motif resolution. Based on these interactomes and additional cellular assays, we can associate several candidates with mRNA splicing, translational regulation, and endocytosis. Our work provides insights into the evolutionary origins and interaction potential of young and small proteins, thereby helping to elucidate this underexplored territory of the human proteome.
Asunto(s)
Péptidos , Biosíntesis de Proteínas , Humanos , Sistemas de Lectura Abierta , Péptidos/genética , Proteómica , MicropéptidosRESUMEN
Finding the components of cellular circuits and determining their functions systematically remains a major challenge in mammalian cells. Here, we introduced genome-wide pooled CRISPR-Cas9 libraries into dendritic cells (DCs) to identify genes that control the induction of tumor necrosis factor (Tnf) by bacterial lipopolysaccharide (LPS), a key process in the host response to pathogens, mediated by the Tlr4 pathway. We found many of the known regulators of Tlr4 signaling, as well as dozens of previously unknown candidates that we validated. By measuring protein markers and mRNA profiles in DCs that are deficient in known or candidate genes, we classified the genes into three functional modules with distinct effects on the canonical responses to LPS and highlighted functions for the PAF complex and oligosaccharyltransferase (OST) complex. Our findings uncover new facets of innate immune circuits in primary cells and provide a genetic approach for dissection of mammalian cell circuits.
Asunto(s)
Sistemas CRISPR-Cas , Técnicas Genéticas , Inmunidad Innata , Animales , Células de la Médula Ósea/inmunología , Diferenciación Celular , Supervivencia Celular , Células Dendríticas/citología , Células Dendríticas/inmunología , Técnicas de Inactivación de Genes , Redes Reguladoras de Genes , Hexosiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Transgénicos , Receptor Toll-Like 4/inmunología , Factor de Necrosis Tumoral alfa/inmunologíaRESUMEN
N(6)-methyladenosine (m(6)A) is the most ubiquitous mRNA base modification, but little is known about its precise location, temporal dynamics, and regulation. Here, we generated genomic maps of m(6)A sites in meiotic yeast transcripts at nearly single-nucleotide resolution, identifying 1,308 putatively methylated sites within 1,183 transcripts. We validated eight out of eight methylation sites in different genes with direct genetic analysis, demonstrated that methylated sites are significantly conserved in a related species, and built a model that predicts methylated sites directly from sequence. Sites vary in their methylation profiles along a dense meiotic time course and are regulated both locally, via predictable methylatability of each site, and globally, through the core meiotic circuitry. The methyltransferase complex components localize to the yeast nucleolus, and this localization is essential for mRNA methylation. Our data illuminate a conserved, dynamically regulated methylation program in yeast meiosis and provide an important resource for studying the function of this epitranscriptomic modification.
Asunto(s)
Meiosis , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Saccharomyces/citología , Saccharomyces/metabolismo , Adenosina/análogos & derivados , Adenosina/análisis , Adenosina/metabolismo , Nucléolo Celular/metabolismo , Genoma Fúngico , Metilación , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , ARNt Metiltransferasas/metabolismoRESUMEN
Levels of the ribosome, the conserved molecular machine that mediates translation, are tightly linked to cellular growth rate. In humans, ribosomopathies are diseases associated with cell-type-specific pathologies and reduced ribosomal protein (RP) levels. Because gene expression defects resulting from ribosome deficiency have not yet been experimentally defined, we systematically probed mRNA, translation, and protein signatures that were either unlinked from or linked to cellular growth rate in RP-deficient yeast cells. Ribosome deficiency was associated with altered translation of gene subclasses, and profound general secondary effects of RP loss on the spectrum of cellular mRNAs were seen. Among these effects, growth-defective 60S mutants increased synthesis of proteins involved in proteasome-mediated degradation, whereas 40S mutants accumulated mature 60S subunits and increased translation of ribosome biogenesis genes. These distinct signatures of protein synthesis suggest intriguing and currently mysterious differences in the cellular consequences of deficiency for small and large ribosomal subunits.
Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas Ribosómicas/genética , Subunidades Ribosómicas Grandes de Eucariotas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transcriptoma , Proliferación Celular , Mutación , Procesamiento Proteico-Postraduccional , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de TiempoRESUMEN
Deciphering the signaling networks that underlie normal and disease processes remains a major challenge. Here, we report the discovery of signaling components involved in the Toll-like receptor (TLR) response of immune dendritic cells (DCs), including a previously unkown pathway shared across mammalian antiviral responses. By combining transcriptional profiling, genetic and small-molecule perturbations, and phosphoproteomics, we uncover 35 signaling regulators, including 16 known regulators, involved in TLR signaling. In particular, we find that Polo-like kinases (Plk) 2 and 4 are essential components of antiviral pathways in vitro and in vivo and activate a signaling branch involving a dozen proteins, among which is Tnfaip2, a gene associated with autoimmune diseases but whose role was unknown. Our study illustrates the power of combining systematic measurements and perturbations to elucidate complex signaling circuits and discover potential therapeutic targets.
Asunto(s)
Células Dendríticas/inmunología , Transducción de Señal , Receptores Toll-Like/metabolismo , Virus , Animales , Células Dendríticas/metabolismo , Femenino , Humanos , Factor 3 Regulador del Interferón/metabolismo , Interferones/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismoRESUMEN
Data-independent acquisition (DIA) is increasingly preferred over data-dependent acquisition due to its higher throughput and fewer missing values. Whereas data-dependent acquisition often uses stable isotope labeling to improve quantification, DIA mostly relies on label-free approaches. Efforts to integrate DIA with isotope labeling include chemical methods like mass differential tags for relative and absolute quantification and dimethyl labeling, which, while effective, complicate sample preparation. Stable isotope labeling by amino acids in cell culture (SILAC) achieves high labeling efficiency through the metabolic incorporation of heavy labels into proteins in vivo. However, the need for metabolic incorporation limits the direct use in clinical scenarios and certain high-throughput experiments. Spike-in SILAC (SiS) methods use an externally generated heavy sample as an internal reference, enabling SILAC-based quantification even for samples that cannot be directly labeled. Here, we combine DIA-SiS, leveraging the robust quantification of SILAC without the complexities associated with chemical labeling. We developed DIA-SiS and rigorously assessed its performance with mixed-species benchmark samples on bulk and single cell-like amount level. We demonstrate that DIA-SiS substantially improves proteome coverage and quantification compared to label-free approaches and reduces incorrectly quantified proteins. Additionally, DIA-SiS proves effective in analyzing proteins in low-input formalin-fixed paraffin-embedded tissue sections. DIA-SiS combines the precision of stable isotope-based quantification with the simplicity of label-free sample preparation, facilitating simple, accurate, and comprehensive proteome profiling.
Asunto(s)
Marcaje Isotópico , Proteoma , Proteómica , Proteoma/metabolismo , Humanos , Proteómica/métodos , Animales , Espectrometría de Masas en Tándem/métodos , Ratones , Aminoácidos/metabolismoRESUMEN
The innate immune system senses viral DNA that enters mammalian cells, or in aberrant situations self-DNA, and triggers type I interferon production. Here we present an integrative approach that combines quantitative proteomics, genomics and small molecule perturbations to identify genes involved in this pathway. We silenced 809 candidate genes, measured the response to dsDNA and connected resulting hits with the known signaling network. We identified ABCF1 as a critical protein that associates with dsDNA and the DNA-sensing components HMGB2 and IFI204. We also found that CDC37 regulates the stability of the signaling molecule TBK1 and that chemical inhibition of the CDC37-HSP90 interaction and several other pathway regulators potently modulates the innate immune response to DNA and retroviral infection.
Asunto(s)
Transportadoras de Casetes de Unión a ATP/inmunología , ADN Viral/inmunología , Células Dendríticas/inmunología , Fibroblastos/inmunología , Regulación de la Expresión Génica/efectos de los fármacos , Inmunidad Innata , Transportadoras de Casetes de Unión a ATP/genética , Animales , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/inmunología , Chaperoninas/antagonistas & inhibidores , Chaperoninas/genética , Chaperoninas/inmunología , Citosol/efectos de los fármacos , Citosol/metabolismo , Citosol/virología , ADN Viral/genética , Células Dendríticas/efectos de los fármacos , Células Dendríticas/virología , Fibroblastos/efectos de los fármacos , Fibroblastos/virología , Regulación de la Expresión Génica/inmunología , Silenciador del Gen , VIH-1/fisiología , Proteína HMGB2/genética , Proteína HMGB2/inmunología , Proteínas HSP90 de Choque Térmico/antagonistas & inhibidores , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/inmunología , Humanos , Ratones , Ratones Transgénicos , Proteínas Nucleares/genética , Proteínas Nucleares/inmunología , Fosfoproteínas/genética , Fosfoproteínas/inmunología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/inmunología , Proteómica , ARN Interferente Pequeño/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Bibliotecas de Moléculas Pequeñas/farmacología , Vesiculovirus/fisiologíaRESUMEN
B cell receptor (BCR) signaling is required for the survival and maturation of B cells and is deregulated in B cell lymphomas. While proximal BCR signaling is well studied, little is known about the crosstalk of downstream effector pathways, and a comprehensive quantitative network analysis of BCR signaling is missing. Here, we semi-quantitatively modelled BCR signaling in Burkitt lymphoma (BL) cells using systematically perturbed phosphorylation data of BL-2 and BL-41 cells. The models unveiled feedback and crosstalk structures in the BCR signaling network, including a negative crosstalk from p38 to MEK/ERK. The relevance of the crosstalk was verified for BCR and CD40 signaling in different BL cells and confirmed by global phosphoproteomics on ERK itself and known ERK target sites. Compared to the starting network, the trained network for BL-2 cells was better transferable to BL-41 cells. Moreover, the BL-2 network was also suited to model BCR signaling in Diffuse large B cell lymphoma cells lines with aberrant BCR signaling (HBL-1, OCI-LY3), indicating that BCR aberration does not cause a major downstream rewiring.
Asunto(s)
Linfoma de Células B , Receptores de Antígenos de Linfocitos B , Transducción de Señal , Humanos , Receptores de Antígenos de Linfocitos B/metabolismo , Línea Celular Tumoral , Linfoma de Células B/metabolismo , Linfoma de Células B/patología , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patología , Biología Computacional , Modelos Biológicos , FosforilaciónRESUMEN
Pancreatic ductal adenocarcinoma (PDAC) remains a particularly aggressive disease with few effective treatments. The PDAC tumor immune microenvironment (TIME) is known to be immune suppressive. Oncolytic viruses can increase tumor immunogenicity via immunogenic cell death (ICD). We focused on tumor-selective (vvDD) and cytokine-armed Western-reserve vaccinia viruses (vvDD-IL2 and vvDD-IL15) and infected carcinoma cell lines as well as patient-derived primary PDAC cells. In co-culture experiments, we investigated the cytotoxic response and the activation of human natural killer (NK). Infection and virus replication were assessed by measuring virus encoded YFP. We then analyzed intracellular signaling processes and oncolysis via in-depth proteomic analysis, immunoblotting and TUNEL assay. Following the co-culture of mock or virus infected carcinoma cell lines with allogenic PBMCs or NK cell lines, CD56+ NK cells were analyzed with respect to their activation, cytotoxicity and effector function. Both, dose- and time-dependent release of danger signals following infection were measured. Viruses effectively entered PDAC cells, emitted YFP signals and resulted in concomitant oncolysis. The proteome showed reprogramming of normally active core signaling pathways in PDAC (e.g., MAPK-ERK signaling). Danger-associated molecular patterns were released upon infection and stimulated co-cultured NK cells for enhanced effector cytotoxicity. NK cell subtyping revealed enhanced numbers and activation of a rare CD56dimCD16dim population. Tumor cell killing was primarily triggered via Fas ligands rather than granule release, resulting in marked apoptosis. Overall, the cytokine-armed vaccinia viruses induced NK cell activation and enhanced cytotoxicity toward human PDAC cells in vitro. We could show that cytokine-armed virus targets the carcinoma cells and thus has great potential to modulate the TIME in PDAC.
RESUMEN
Growth arrest-specific 1 (GAS1) acts as a co-receptor to patched 1, promoting sonic hedgehog (SHH) signaling in the developing nervous system. GAS1 mutations in humans and animal models result in forebrain and craniofacial malformations, defects ascribed to a function for GAS1 in SHH signaling during early neurulation. Here, we confirm loss of SHH activity in the forebrain neuroepithelium in GAS1-deficient mice and in induced pluripotent stem cell-derived cell models of human neuroepithelial differentiation. However, our studies document that this defect can be attributed, at least in part, to a novel role for GAS1 in facilitating NOTCH signaling, which is essential to sustain a persistent SHH activity domain in the forebrain neuroepithelium. GAS1 directly binds NOTCH1, enhancing ligand-induced processing of the NOTCH1 intracellular domain, which drives NOTCH pathway activity in the developing forebrain. Our findings identify a unique role for GAS1 in integrating NOTCH and SHH signal reception in neuroepithelial cells, and they suggest that loss of GAS1-dependent NOTCH1 activation contributes to forebrain malformations in individuals carrying GAS1 mutations.
Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Hedgehog/metabolismo , Prosencéfalo/metabolismo , Receptor Notch1/metabolismo , Animales , Proteínas de Ciclo Celular/deficiencia , Diferenciación Celular , Embrión de Mamíferos , Células Epiteliales/citología , Células Epiteliales/metabolismo , Epitelio/metabolismo , Proteínas Ligadas a GPI/deficiencia , Proteínas Ligadas a GPI/metabolismo , Humanos , Ratones , Mutación , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Receptor Patched-1/metabolismo , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/metabolismo , Prosencéfalo/citología , Prosencéfalo/embriología , Transducción de SeñalRESUMEN
This study presents a comprehensive characterization of the viscoelastic and structural properties of bovine submaxillary mucin (BSM), which is widely used as a commercial source to conduct mucus-related research. We conducted concentration studies of BSM and examined the effects of various additives, NaCl, CaCl2, MgCl2, lysozyme, and DNA, on its rheological behavior. A notable connection between BSM concentration and viscoelastic properties was observed, particularly under varying ionic conditions. The rheological spectra could be well described by a fractional Kelvin-Voigt model with a minimum of model parameters. A detailed proteomics analysis provided insight into the protein, especially mucin composition within BSM, showing MUC19 as the main component. Cryo-scanning electron microscopy enabled the visualization of the porous BSM network structure. These investigations give us a more profound comprehension of the BSM properties, especially those pertaining to viscoelasticity, and how they are influenced by concentration and environmental conditions, aspects relevant to the field of mucus research.
Asunto(s)
Hidrogeles , Mucinas , Animales , Bovinos , Mucinas/química , Hidrogeles/química , Viscosidad , Elasticidad , Reología , Glándula Submandibular/química , Glándula Submandibular/metabolismoRESUMEN
BACKGROUND: Recent studies demonstrated that the triple combination cystic fibrosis transmembrane conductance regulator (CFTR) modulator therapy elexacaftor/tezacaftor/ivacaftor (ETI) improves lung function and reduces pulmonary exacerbations in cystic fibrosis (CF) patients with at least one F508del allele. However, effects of ETI on downstream consequences of CFTR dysfunction, i.e. abnormal viscoelastic properties of airway mucus, chronic airway infection and inflammation have not been studied. The aim of this study was to determine the longitudinal effects of ETI on airway mucus rheology, microbiome and inflammation in CF patients with one or two F508del alleles aged ≥12â years throughout the first 12â months of therapy. METHODS: In this prospective observational study, we assessed sputum rheology, the microbiome, inflammation markers and proteome before and 1, 3 and 12â months after initiation of ETI. RESULTS: In total, 79 patients with CF and at least one F508del allele and 10 healthy controls were enrolled in this study. ETI improved the elastic modulus and viscous modulus of CF sputum at 3 and 12â months after initiation (all p<0.01). Furthermore, ETI decreased the relative abundance of Pseudomonas aeruginosa in CF sputum at 3â months and increased the microbiome α-diversity at all time points. In addition, ETI reduced interleukin-8 at 3â months (p<0.05) and free neutrophil elastase activity at all time points (all p<0.001), and shifted the CF sputum proteome towards healthy. CONCLUSIONS: Our data demonstrate that restoration of CFTR function by ETI improves sputum viscoelastic properties, chronic airway infection and inflammation in CF patients with at least one F508del allele over the first 12â months of therapy; however, levels close to healthy were not reached.
Asunto(s)
Fibrosis Quística , Humanos , Fibrosis Quística/complicaciones , Fibrosis Quística/tratamiento farmacológico , Esputo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Proteoma , MutaciónRESUMEN
Neuroligin-4 (NLGN4) loss-of-function mutations are associated with monogenic heritable autism spectrum disorder (ASD) and cause alterations in both synaptic and behavioral phenotypes. Microglia, the resident CNS macrophages, are implicated in ASD development and progression. Here we studied the impact of NLGN4 loss in a mouse model, focusing on microglia phenotype and function in both male and female mice. NLGN4 depletion caused lower microglia density, less ramified morphology, reduced response to injury and purinergic signaling specifically in the hippocampal CA3 region predominantly in male mice. Proteomic analysis revealed disrupted energy metabolism in male microglia and provided further evidence for sexual dimorphism in the ASD associated microglial phenotype. In addition, we observed impaired gamma oscillations in a sex-dependent manner. Lastly, estradiol application in male NLGN4-/- mice restored the altered microglial phenotype and function. Together, these results indicate that loss of NLGN4 affects not only neuronal network activity, but also changes the microglia state in a sex-dependent manner that could be targeted by estradiol treatment.
Asunto(s)
Trastorno del Espectro Autista , Masculino , Femenino , Animales , Ratones , Trastorno del Espectro Autista/genética , Microglía , Ratones Noqueados , Proteómica , Neuronas/fisiologíaRESUMEN
A fundamental goal of genomics is to identify the complete set of expressed proteins. Automated annotation strategies rely on assumptions about protein-coding sequences (CDSs), e.g., they are conserved, do not overlap, and exceed a minimum length. However, an increasing number of newly discovered proteins violate these rules. Here we present an experimental and analytical framework, based on ribosome profiling and linear regression, for systematic identification and quantification of translation. Application of this approach to lipopolysaccharide-stimulated mouse dendritic cells and HCMV-infected human fibroblasts identifies thousands of novel CDSs, including micropeptides and variants of known proteins, that bear the hallmarks of canonical translation and exhibit translation levels and dynamics comparable to that of annotated CDSs. Remarkably, many translation events are identified in both mouse and human cells even when the peptide sequence is not conserved. Our work thus reveals an unexpected complexity to mammalian translation suited to provide both conserved regulatory or protein-based functions.
Asunto(s)
Proteoma/metabolismo , Proteómica/métodos , Ribosomas/metabolismo , Secuencia de Aminoácidos , Animales , Células Cultivadas , Secuencia Conservada , Células Dendríticas/efectos de los fármacos , Humanos , Lipopolisacáridos/farmacología , Ratones , Sistemas de Lectura Abierta , Análisis de RegresiónRESUMEN
Protein-protein interactions mediated by intrinsically disordered regions are often based on short linear motifs (SLiMs). SLiMs are implicated in signal transduction and gene regulation yet remain technically laborious and notoriously challenging to study. Here, we present an optimized method for a protein interaction screen on a peptide matrix (PRISMA) in combination with quantitative MS. The protocol was benchmarked with previously described SLiM-based protein-protein interactions using peptides derived from EGFR, SOS1, GLUT1, and CEBPB and extended to map binding partners of kinase activation loops. The detailed protocol provides practical considerations for setting up a PRISMA screen and subsequently implementing PRISMA on a liquid-handling robotic platform as a cost-effective high-throughput method. Optimized PRISMA can be universally applied to systematically study SLiM-based interactions and associated post-translational modifications or mutations to advance our understanding of the largely uncharacterized interactomes of intrinsically disordered protein regions.
Asunto(s)
Proteómica/métodos , Secuencias de Aminoácidos , Células HeLa , Humanos , Péptidos/química , Mutación Puntual , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-PostraduccionalRESUMEN
BACKGROUND: Many heart diseases can result in reduced pumping capacity of the heart muscle. A mismatch between ATP demand and ATP production of cardiomyocytes is one of the possible causes. Assessment of the relation between myocardial ATP production (MVATP) and cardiac workload is important for better understanding disease development and choice of nutritional or pharmacologic treatment strategies. Because there is no method for measuring MVATP in vivo, the use of physiology-based metabolic models in conjunction with protein abundance data is an attractive approach. METHOD: We developed a comprehensive kinetic model of cardiac energy metabolism (CARDIOKIN1) that recapitulates numerous experimental findings on cardiac metabolism obtained with isolated cardiomyocytes, perfused animal hearts, and in vivo studies with humans. We used the model to assess the energy status of the left ventricle of healthy participants and patients with aortic stenosis and mitral valve insufficiency. Maximal enzyme activities were individually scaled by means of protein abundances in left ventricle tissue samples. The energy status of the left ventricle was quantified by the ATP consumption at rest (MVATP[rest]), at maximal workload (MVATP[max]), and by the myocardial ATP production reserve, representing the span between MVATP(rest) and MVATP(max). RESULTS: Compared with controls, in both groups of patients, MVATP(rest) was increased and MVATP(max) was decreased, resulting in a decreased myocardial ATP production reserve, although all patients had preserved ejection fraction. The variance of the energetic status was high, ranging from decreased to normal values. In both patient groups, the energetic status was tightly associated with mechanic energy demand. A decrease of MVATP(max) was associated with a decrease of the cardiac output, indicating that cardiac functionality and energetic performance of the ventricle are closely coupled. CONCLUSIONS: Our analysis suggests that the ATP-producing capacity of the left ventricle of patients with valvular dysfunction is generally diminished and correlates positively with mechanical energy demand and cardiac output. However, large differences exist in the energetic state of the myocardium even in patients with similar clinical or image-based markers of hypertrophy and pump function. Registration: URL: https://www.clinicaltrials.gov; Unique identifiers: NCT03172338 and NCT04068740.