Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
New Phytol ; 243(2): 765-780, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38798267

RESUMEN

Mutualisms between plants and fruit-eating animals were key to the radiation of angiosperms. Still, phylogenetic uncertainties limit our understanding of fleshy-fruit evolution, as in the case of Solanum, a genus with remarkable fleshy-fruit diversity, but with unresolved phylogenetic relationships. We used 1786 nuclear genes from 247 species, including 122 newly generated transcriptomes/genomes, to reconstruct the Solanum phylogeny and examine the tempo and mode of the evolution of fruit color and size. Our analysis resolved the backbone phylogeny of Solanum, providing high support for its clades. Our results pushed back the origin of Solanum to 53.1 million years ago (Ma), with most major clades diverging between 35 and 27 Ma. Evolution of Solanum fruit color and size revealed high levels of trait conservatism, where medium-sized berries that remain green when ripe are the likely ancestral form. Our analyses revealed that fruit size and color are evolutionary correlated, where dull-colored fruits are two times larger than black/purple and red fruits. We conclude that the strong phylogenetic conservatism shown in the color and size of Solanum fruits could limit the influences of fruit-eating animals on fleshy-fruit evolution. Our findings highlight the importance of phylogenetic constraints on the diversification of fleshy-fruit functional traits.


Asunto(s)
Evolución Biológica , Núcleo Celular , Color , Frutas , Filogenia , Pigmentación , Solanum , Solanum/genética , Frutas/genética , Pigmentación/genética , Núcleo Celular/genética , Genes de Plantas
2.
Ann Bot ; 127(5): 577-595, 2021 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-33151331

RESUMEN

BACKGROUND AND AIMS: Much of our understanding of the ecology and evolution of seed dispersal in the Neotropics is founded on studies involving the animal-dispersed, hyperdiverse plant clade Miconia (Melastomataceae). Nonetheless, no formal attempt has been made to establish its relevance as a model system or indeed provide evidence of the role of frugivores as Miconia seed dispersers. METHODS: We built three Miconia databases (fruit phenology/diaspore traits, fruit-frugivore interactions and effects on seed germination after gut passage) to determine how Miconia fruiting phenology and fruit traits for >350 species interact with and shape patterns of frugivore selection. In addition, we conducted a meta-analysis evaluating the effects of animal gut passage/seed handling on Miconia germination. KEY RESULTS: Miconia produce numerous small berries that enclose numerous tiny seeds within water- and sugar-rich pulps. In addition, coexisting species provide sequential, year long availability of fruits within communities, with many species producing fruits in periods of resource scarcity. From 2396 pairwise interactions, we identified 646 animal frugivore species in five classes, 22 orders and 60 families, including birds, mammals, reptiles, fish and ants that consume Miconia fruits. Endozoochory is the main dispersal mechanism, but gut passage effects on germination were specific to animal clades; birds, monkeys and ants reduced seed germination percentages, while opossums increased it. CONCLUSIONS: The sequential fruiting phenologies and wide taxonomic and functional diversity of animal vectors associated with Miconia fruits underscore the likely keystone role that this plant clade plays in the Neotropics. By producing fruits morphologically and chemically accessible to a variety of animals, Miconia species ensure short- and long-distance seed dispersal and constitute reliable resources that sustain entire frugivore assemblages.


Asunto(s)
Melastomataceae , Dispersión de Semillas , Animales , Conducta Alimentaria , Frutas , Germinación , Semillas
3.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230128, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38913067

RESUMEN

Negative density dependence (NDD) in biotic interactions of interference such as plant-plant competition, granivory and herbivory are well-documented mechanisms that promote species' coexistence in diverse plant communities worldwide. Here, we investigated the generality of a novel type of NDD mechanism that operates through the mutualistic interactions of frugivory and seed dispersal among fruit-eating birds and plants. By sampling community-wide frugivory interactions at high spatial and temporal resolution in Pennsylvania, Puerto Rico, Peru, Brazil and Argentina, we evaluated whether interaction frequencies between birds and fruit resources occurred more often (selection), as expected, or below expectations (under-utilization) set by the relative fruit abundance of the fruit resources of each plant species. Our models considered the influence of temporal scales of fruit availability and bird phylogeny and diets, revealing that NDD characterizes frugivory across communities. Irrespective of taxa or dietary guild, birds tended to select fruits of plant species that were proportionally rare in their communities, or that became rare following phenological fluctuations, while they mostly under-utilized abundant fruit resources. Our results demonstrate that negative density-dependence in frugivore-plant interactions provides a strong equalizing mechanism for the dispersal processes of fleshy-fruited plant species in temperate and tropical communities, likely contributing to building and sustaining plant diversity. This article is part of the theme issue 'Diversitydependence of dispersal: interspecific interactions determine spatial dynamics'.


Asunto(s)
Aves , Frutas , Simbiosis , Animales , Aves/fisiología , Frutas/fisiología , Dispersión de Semillas , Conducta Alimentaria , Densidad de Población , Herbivoria , Argentina , Pennsylvania , Brasil , Puerto Rico
4.
Ecology ; 105(6): e4308, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38629131

RESUMEN

The recent availability of open-access repositories of functional traits has revolutionized trait-based approaches in ecology and evolution. Nevertheless, the underrepresentation of tropical regions and lineages remains a pervasive bias in plant functional trait databases, which constrains large-scale assessments of plant ecology, evolution, and biogeography. Here, we present MelastomaTRAITs 1.0, a comprehensive and updatable database of functional traits for the pantropical Melastomataceae, the ninth-largest angiosperm family with 177 genera and more than 5800 species. Melastomataceae encompass species with a wide diversity of growth forms (herbs, shrubs, trees, epiphytes, and woody climbers), habitats (including tropical forests, savannas, grasslands, and wetlands from sea level to montane areas above the treeline), ecological strategies (from pioneer, edge-adapted and invasive species to shade-tolerant understory species), geographic distribution (from microendemic to continental-wide distribution), reproductive, pollination, and seed dispersal systems. MelastomaTRAITs builds on 581 references, such as taxonomic monographs, ecological research, and unpublished data, and includes four whole-plant traits, six leaf traits, 11 flower traits, 18 fruit traits, and 27 seed traits for 2520 species distributed in 144 genera across all 21 tribes. Most data come from the Neotropics where the family is most species-rich. Miconieae (the largest tribe) contains the highest number of trait records (49.6%) and species (41.1%) records. The trait types with the most information in the database were whole-plant traits, flowers, and leaf traits. With the breadth of functional traits recorded, our database helps to fill a gap in information for tropical plants and will significantly improve our capacity for large-scale trait-based syntheses across levels of organization, plant-animal interactions, regeneration ecology, and thereby support conservation and restoration programs. There are no copyright restrictions on the dataset; please cite this data paper when reusing the data.


Asunto(s)
Bases de Datos Factuales , Melastomataceae , Ecosistema , Melastomataceae/fisiología , Melastomataceae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA