RESUMEN
Background@#Conventional modality requires several days observation by Holter monitor to differentiate atrial fibril‑ lation (AF) between Paroxysmal atrial fibrillation (PAF) and Non-paroxysmal atrial fibrillation (Non-PAF). Rapid and practical differentiating approach is needed. @*Objective@#To develop a machine learning model that observes 10-s of standard 12-lead electrocardiograph (ECG) for real-time classification of AF between PAF versus Non-PAF. @*Methods@#In this multicenter, retrospective cohort study, the model training and cross-validation was performed on a dataset consisting of 741 patients enrolled from Severance Hospital, South Korea. For cross-institutional validation, the trained model was applied to an independent data set of 600 patients enrolled from Ewha University Hospital, South Korea. Lasso regression was applied to develop the model. @*Results@#In the primary analysis, the Area Under the Receiver Operating Characteristic Curve (AUC) on the test set for the model that predicted AF subtype only using ECG was 0.72 (95% CI 0.65–0.80). In the secondary analysis, AUC only using baseline characteristics was 0.53 (95% CI 0.45–0.61), while the model that employed both baseline characteris‑ tics and ECG parameters was 0.72 (95% CI 0.65–0.80). Moreover, the model that incorporated baseline characteristics, ECG, and Echocardiographic parameters achieved an AUC of 0.76 (95% CI 0.678–0.855) on the test set. @*Conclusions@#Our machine learning model using ECG has potential for automatic differentiation of AF between PAF versus Non-PAF achieving high accuracy. The inclusion of Echocardiographic parameters further increases model per‑ formance. Further studies are needed to clarify the next steps towards clinical translation of the proposed algorithm.