RESUMEN
BACKGROUND: Non-invasive measurement of liver stiffness (LS), traditionally performed in the supine position, has been established to assess liver fibrosis. However, fibrosis degree is not the sole determinant of LS, necessitating the identification of relevant confounders. One often-overlooked factor is body posture, and it remains unclear whether normal daily postures interfere with LS irrespective of fibrosis. A prospective two-group comparison study was conducted to investigate the relationship between posture and LS. METHODS: Sixty-two adults participated, divided into two groups: patients with chronic liver disease and healthy controls. Both groups were assessed using transient elastography (TE) under the supine, seated, and standing postures. Randomization was applied to the order of the two upright postures. A two-way mixed ANOVA was conducted to assess the posture-dependence of LS and its variations between two groups. RESULTS: Results showed that posture differentially affected LS depending on the presence of liver fibrosis. In 31 healthy individuals (baseline LS range: 3.5-6.8 kPa), a transition from the supine (5.0 ± 1.0 kPa) to seated (5.7 ± 1.4 kPa; p = 0.036) or standing (6.2 ± 1.7 kPa; p = 0.002) positions increased LS, indicating liver stiffening. Conversely, in 31 patients with varying fibrosis stages (baseline LS range: 8.8-38.2 kPa), posture decreased LS from the supine (15.9 ± 7.3 kPa) to seated (13.8 ± 6.2 kPa; p < 0.001) or standing (13.9 ± 6.2 kPa; p = 0.001) positions. No significant difference in LS was observed between the seated and standing positions in both groups (control group: 5.7 vs. 6.2 kPa, p = 0.305; patient group: 13.8 vs. 13.9 kPa, p = 1). Additionally, different postures did not elicit significant changes in the success rate (supine, 98.6 ± 4%; seated, 97.6 ± 6%; standing, 99.1 ± 3%; p = 0.258) and IQR/median value (supine, 25 ± 8%; seated, 29 ± 15%; standing, 29 ± 12%; p = 0.117), implying no impact on both measurement feasibility and reliability. CONCLUSIONS: We demonstrated, for the first time, the feasibility of utilizing upright postures as an alternative measurement protocol for TE. We further unravel a previously unrecognized role of transitioning between different postures to assist the diagnosis of cirrhosis. The findings suggested that daily physiological activity of postural changes suffices to alter LS. Therefore, body positioning should be standardized and carefully considered when interpreting LS.
Asunto(s)
Diagnóstico por Imagen de Elasticidad , Cirrosis Hepática , Hígado , Postura , Humanos , Diagnóstico por Imagen de Elasticidad/métodos , Masculino , Femenino , Estudios Prospectivos , Cirrosis Hepática/diagnóstico por imagen , Cirrosis Hepática/fisiopatología , Postura/fisiología , Persona de Mediana Edad , Adulto , Hígado/diagnóstico por imagen , Hígado/fisiopatología , Hígado/patología , Posición Supina , Estudios de Casos y Controles , Anciano , Posición de PieRESUMEN
Evolutionary radiation is a widely recognized mode of species diversification, but its underlying mechanisms have not been unambiguously resolved for species-rich cosmopolitan plant genera. In particular, it remains largely unknown how biological and environmental factors have jointly driven its occurrence in specific regions. Here, we use Rhododendron, the largest genus of woody plants in the Northern Hemisphere, to investigate how geographic and climatic factors, as well as functional traits, worked together to trigger plant evolutionary radiations and shape the global patterns of species richness based on a solid species phylogeny. Using 3,437 orthologous nuclear genes, we reconstructed the first highly supported and dated backbone phylogeny of Rhododendron comprising 200 species that represent all subgenera, sections, and nearly all multispecies subsections, and found that most extant species originated by evolutionary radiations when the genus migrated southward from circumboreal areas to tropical/subtropical mountains, showing rapid increases of both net diversification rate and evolutionary rate of environmental factors in the Miocene. We also found that the geographically uneven diversification of Rhododendron led to a much higher diversity in Asia than in other continents, which was mainly driven by two environmental variables, that is, elevation range and annual precipitation, and were further strengthened by the adaptation of leaf functional traits. Our study provides a good example of integrating phylogenomic and ecological analyses in deciphering the mechanisms of plant evolutionary radiations, and sheds new light on how the intensification of the Asian monsoon has driven evolutionary radiations in large plant genera of the Himalaya-Hengduan Mountains.
Asunto(s)
Rhododendron , Asia , Evolución Biológica , Filogenia , Plantas , Rhododendron/genéticaRESUMEN
We successfully prepared a series of l-arginine Schiff bases acylated chitosan derivatives, aiming to improve the antioxidant activity and antimicrobial activity of chitosan by introducing a furan ring, pyridine ring, and l-arginine structure. The accuracy of the structures of ten compounds was characterized by FT-IR and 1H NMR. In terms of DPPH radical scavenging activity, except for compound CR3PCA, the scavenging rate of other compounds was higher than chitosan, especially CRCF and CRBF had strong scavenging abilities. At the same time, in the superoxide-radical scavenging activity assay, CRCF, CRBF, CR3PCA, CR2C3PCA, and CR2B3PCA were comparable to positive control at 1.60 mg/mL. Simultaneously, CRFF, CRCF, and CRBF had a certain inhibitory effect on Botrytis cinerea. Furthermore, the inhibitory effect of CRFF, CRCF, and CR3PCA on Staphylococcus aureus was very well, close to the positive control at 1.00 mg/mL. CRCF and CR2B3PCA showed better inhibitory effects on Escherichia coli than other compounds. The MTT assay was used to determine the cytotoxicity of the chitosan derivatives, which proved their safety to fibroblast cells. In summary, the study indicated that some of these compounds have the potential for further development and utilization in the preparation of antioxidants and antimicrobial agents.
Asunto(s)
Antiinfecciosos , Quitosano , Bases de Schiff/farmacología , Bases de Schiff/química , Quitosano/química , Antioxidantes/farmacología , Antioxidantes/química , Pruebas de Sensibilidad Microbiana , Espectroscopía Infrarroja por Transformada de Fourier , Antifúngicos/farmacología , Antiinfecciosos/farmacología , Antiinfecciosos/química , Antibacterianos/farmacología , Escherichia coli , Arginina/farmacologíaRESUMEN
In this study, chitosan nanoparticles (HF-CD NPs) were synthesized by an ionic gelation method using negatively charged carboxymethyl-ß-cyclodextrin and positively charged 2-hydroxypropyltrimethyl ammonium chloride chitosan bearing folic acid. The surface morphology of HF-CD NPs was spherical or oval, and they possessed relatively small particle size (192 ± 8 nm) and positive zeta potential (+20 ± 2 mV). Meanwhile, doxorubicin (Dox) was selected as model drug to investigate the prepared nanoparticles' potential to serve as a drug delivery carrier. The drug loading efficiency of drug-loaded nanoparticles (HF-Dox-CD NPs) was 31.25%. In vitro release profiles showed that Dox release of nanoparticles represented a pH-sensitive sustained and controlled release characteristic. At the same time, the antioxidant activity of nanoparticles was measured, and chitosan nanoparticles possessed good antioxidant activity and could inhibit the lipid peroxidation inside the cell and avoid material infection. Notably, CCK-8 assay testified that the nanoparticles were safe drug carriers and significantly enhanced the antitumor activity of Dox. The nanoparticles possessed good antioxidant activity, pH-sensitive sustained controlled release, enhanced antitumor activity, and could be expected to serve as a drug carrier in future with broad application prospects.
Asunto(s)
Quitosano , Nanopartículas , Antioxidantes/farmacología , Preparaciones de Acción Retardada , Doxorrubicina/farmacología , Portadores de Fármacos , Concentración de Iones de Hidrógeno , beta-CiclodextrinasRESUMEN
Excessive inorganic ions in vivo may lead to electrolyte disorders and induce damage to the human body. Therefore, preparation of enhanced bioactivity compounds, composed of activated organic cations and organic anions, is of great interest among researchers. In this work, glucosamine-heparin salt (GHS) was primarily synthesized with positively charged glucosamine hydrochloride (GAH) and negatively charged heparin sodium (Heps) by ion exchange method. Then, the detailed structural information of the GHS was characterized by FTIR, 1H NMR spectroscopy and ICP-MS. In addition, its anticoagulant potency and antioxidant properties were evaluated, respectively. The results demonstrated that GHS salt achieved enhanced antioxidant activities, including 98.78% of O2â¢- radical scavenging activity, 91.23% of â¢OH radical scavenging rate and 66.49% of DPPH radical scavenging capacity at 1.6 mg/mL, severally. Meanwhile, anticoagulant potency (ATTP) of GHS strengthened from 153.10 ± 17.14 to 180.03 ± 6.02 at 0.75 µmol/L. Thus, introducing cationic glucosamine residues into GHS could improve its anticoagulant activity. The findings suggest that GHS product with a small amount of inorganic ions can greatly abate the prime cost of antioxidants and anticoagulants, and has significant economic benefits and practical significance.
Asunto(s)
Anticoagulantes , Heparina , Humanos , Heparina/farmacología , Heparina/química , Anticoagulantes/farmacología , Anticoagulantes/química , Antioxidantes/farmacología , Antioxidantes/química , Glucosamina/farmacología , Glucosamina/química , Cloruro de Sodio , Iones , ElectrólitosRESUMEN
N-2-hydroxypropyltrimethyl ammonium chloride chitosan (HACC), a cationic quaternary ammonium salt polymer exhibiting good solubility in water, is widely used because of its low toxicity and good biocompatibility. Herein, through ion exchange reaction, we prepared N-2-hydroxypropyltrimethyl ammonium chitosan derivatives bearing amino acid Schiff bases with good biological activities. The accuracy of the structures was verified by FT-IR and 1H NMR. The antibacterial activity, antifungal activity, and scavenging ability of DPPH radical and superoxide radical of HACC derivatives were significantly improved compared with that of HACC. In particular, HACGM (HACC-potassium 2-((2-hydroxy-3-methoxybenzylidene)amino)acetate) and HACGB (HACC-potassium 2-((5-bromo-2-hydroxybenzylidene)amino)acetate) showed good inhibitory effect on bacteria and fungi, including Staphylococcus aureus, Escherichia coli, Botrytis cinerea, and Fusarium oxysporum f. sp. cubense. The inhibition rate of HACGB on Staphylococcus aureus and Escherichia coli could reach 100% at the concentration of 0.1 mg/mL, and the inhibition rate of HACGM and HACGB on Botrytis cinerea and Fusarium oxysporum f. sp. cubense could also reach 100% at the concentration of 0.5 mg/mL. Improving antimicrobial and antioxidant activities of HACC could provide ideas and experiences for the development and utilization of chitosan derivatives.
Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Antioxidantes/farmacología , Quitosano/análogos & derivados , Compuestos de Amonio Cuaternario/farmacología , Antibacterianos/química , Antifúngicos/química , Antioxidantes/química , Quitosano/química , Quitosano/farmacología , Espectroscopía de Resonancia Magnética , Compuestos de Amonio Cuaternario/química , Bases de Schiff/química , Solubilidad , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
Chronic and excessive alcohol consumption leads to alcoholic liver disease (ALD). However, the molecular mechanisms in the regulation of ALD have not been fully deciphered. Liver lipid accumulation is an important research direction in ALD. In this study, the physiological role of nuclear factor Y (NF-Y) in ALD and the related mechanisms were investigated using murine hepatocytes and an ethanol-induced liver injury mouse model. In this study, ethanol promoted hepatic NF-Y expression in a mouse model and Hepa1-6 mouse hepatocytes. Lentivirus-mediated NF-Y overexpression in Hepa1-6 cells markedly increased sterol regulatory element binding protein 1 (SREBP1) and fatty acid synthase (FASN) expression compared with empty vector control cells. Conversely, CRISPR/Cas9-mediated knockdown of NF-Y subunit A (NF-YA) attenuated FASN and SREBP1 expression. Mechanistically, luciferase reporter gene assays and chromatin immunoprecipitation (ChIP) analysis indicated that NF-Y activates the transcription of SREBP1 by directly binding to the CCAAT regulatory sequence motif in the promoter. Overall, our results reveal a previously unrecognized physiological function of NF-Y in ALD by activating sterol regulatory element-binding protein 1 (SREBP1). Modulation of hepatic NF-Y expression may therefore offer an attractive therapeutic approach to manage ALD.
Asunto(s)
Factor de Unión a CCAAT/metabolismo , Hepatopatías Alcohólicas/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Animales , Secuencia de Bases , Factor de Unión a CCAAT/biosíntesis , Factor de Unión a CCAAT/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Etanol/farmacología , Acido Graso Sintasa Tipo I/metabolismo , Humanos , Masculino , Ratones , Regiones Promotoras Genéticas/genética , Unión Proteica , Ratas , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/biosíntesis , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Activación Transcripcional/efectos de los fármacos , Regulación hacia ArribaRESUMEN
Recent years have seen a steady increase in interest and demand for the use of humectants based on biodegradable natural polymers in many fields. The aim of this paper is to investigate the moisture absorption and retention properties of 2-hydroxypropyltrimethyl ammonium chitosan derivatives which were modified by anionic compounds via ion exchange. FTIR, 1H NMR, and 13C NMR spectroscopy were used to demonstrate the specific structures of chitosan derivatives. The degrees of substitution for objective products were calculated by the integral ratio of hydrogen atoms according to 1H NMR spectroscopy. Meanwhile, moisture absorption of specimens was assayed in a desiccator at different relative humidity (RH: 43% and 81%), and all target products exhibited enhanced moisture absorption. Furthermore, moisture retention measurement at different relative humidity (RH: 43%, 81%, and drier silica gel) was estimated, and all target products possessed obviously improved moisture retention property. Specifically, after 48 h later, the moisture retention property of HACBA at 81% RH was 372.34%, which was much higher than HA (180.04%). The present study provided a novel method to synthesize chitosan derivatives with significantly improved moisture absorption and retention properties that would serve as potential humectants in biomedical, food, medicine, and cosmetics fields.
RESUMEN
Previous studies have examined the associations of meteorological factors with blood pressure; however, these associations have not fully elucidated, especially lacking of evidence from cohort study, little information about the associations of cold pressor sensitivity with blood pressure and its fluctuation. The objective of this study was to investigate the outdoor and indoor temperature, barometric pressure, humidity, and cold pressor sensitivity with blood pressure and its fluctuation. Forty-eight healthy subjects were recruited, and response of blood pressure to cold exposure was measured with cold pressor test (CPT). Then, all the subjects were followed up, and blood pressure was measured every half a month in a period of consecutive 12 months. Multiple panel analysis with random-effects generalized least squares (GLS) regression was used to analyze the effect of the outdoor and indoor temperature, barometric pressure, humidity, and response to cold pressor exposure on blood pressure. Outdoor and indoor temperature and humidity were found to be independently associated with blood pressure (all the P values < 0.05). The response to cold exposure positively associated with blood pressure and its fluctuation (P < 0.05). The subjects with higher cold pressor sensitivity had about 4.7 mmHg higher maximum difference of SBP in 1 year than the subjects with lower sensitivity. Outdoor and indoor temperature, humidity, and response to cold exposure are associated with blood pressure and its fluctuation. These findings provided extending evidence on blood pressure management in clinic and preventive practice.
Asunto(s)
Frío , Presión Sanguínea , Estudios de Cohortes , Humedad , TemperaturaRESUMEN
Patients with alcohol use disorder may develop acute ethanol withdrawal syndrome (EWS). Previous studies showed that an epigenetic modification of the N-methyl-D-aspartate (NMDA) receptor, especially NMDA receptor 2B subunit (NR2B), was involved in the pathological process of EWS. However, the relationship between the epigenetic regulation of the NR2B gene in the rat hippocampus region and EWS were inconsistent. The purpose of this study was to explore the role of the histone H3K9 acetylation of the NR2B gene in the rat hippocampus region in EWS. A rat model of chronic ethanol exposure was established. EWS score and the behavioral changes were recorded at different time points. The NR2B expression levels and the histone H3K9 acetylation level in the NR2B gene promoter region were measured using qRT-PCR, Western blot, immunofluorescence, and chromatin immunoprecipitation, respectively. Finally, the relationship between the epigenetic modification of histone H3K9 acetylation of NR2B gene promoter and EWS were examined. Our ultimate results showed that the EWS score was increased at 2 h, peaked at 6 h after withdrawal of ethanol, and reduced to the level parallel to the normal control group at day 3 after ethanol withdrawal. The NR2B mRNA expression and protein levels showed similar patterns. Further correlation analyses indicted that both histone H3K9 acetylation in NR2B gene promoter and the expression levels of NR2B were positively associated with EWS. Our results suggest that chronic ethanol exposure may result in epigenetic modification of histone H3K9 acetylation in NR2B gene promoter in rat hippocampus, and the expression levels of NR2B were found to be positively correlated with ethanol withdrawal syndrome.
Asunto(s)
Histonas/genética , Receptores de N-Metil-D-Aspartato/genética , Síndrome de Abstinencia a Sustancias/genética , Acetilación , Consumo de Bebidas Alcohólicas/genética , Alcoholismo/genética , Animales , China , Metilación de ADN , Modelos Animales de Enfermedad , Epigénesis Genética/genética , Epigenómica/métodos , Etanol/metabolismo , Hipocampo/metabolismo , Masculino , Regiones Promotoras Genéticas/genética , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismoRESUMEN
OBJECTIVE: To produce a recombinant spermatozoa antigen peptide using the E. coli: PhoA system on a protein chip for screening anti-sperm antibodies (ASA). RESULTS: The purity of the recombinant spermatozoa antigen exceeded 95% after two-step purification, as assessed using SDS-PAGE and HPLC. The diagnostic performance of a protein chip coated with the recombinant antigen peptide was evaluated by examining ASA in 51 infertile patients in comparison with a commercial ELISA kit. The area under the receiver operating characteristic curve (AUC) was 0.944, which indicated that the protein chip coated with recombinant spermatozoa antigen peptide was consistent with ELISA for ASA detection. CONCLUSION: A recombinant spermatozoa antigen was expressed in the E. coli PhoA secretory expression system and its potential application for clinical ASA detection was validated.
Asunto(s)
Escherichia coli/metabolismo , Infertilidad Masculina/inmunología , Proteínas Recombinantes/metabolismo , Espermatozoides/inmunología , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Antígenos/genética , Antígenos/metabolismo , Área Bajo la Curva , Autoanticuerpos/análisis , Ensayo de Inmunoadsorción Enzimática , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Masculino , Análisis por Matrices de Proteínas , Proteínas Recombinantes/genéticaRESUMEN
BACKGROUND: 5-Hydroxytryptamine (5-HT) 3 receptor plays a crucial role in craving of alcohol dependence. Recent evidence shows that chronic alcohol exposure causes changes in gene expression and induces behavioral changes. However, the relationship between gene expression of 5-HT3 receptor and craving in alcohol-dependent patients is not fully understood. OBJECTIVES: The aim of this preliminary study was to investigate the relationship between gene expression of the 5-HT3 receptor and craving in alcohol-dependent patients and the epigenetic mechanism. METHODS: We recruited 50 male Han Chinese alcohol-dependent patients and 46 male Han Chinese healthy controls. We investigated the changes of HTR3A mRNA, which encodes the 5-HT3 receptor A subunit, and H3K9 acetylation in HTR3A promoter region. Obsessive Compulsive Drinking Scale (OCDS) was used to assess the craving of alcohol-dependent patients relative to controls. RESULTS: HTR3A mRNA expression levels and acetylation levels of H3K9 in the HTR3A promoter region were significantly higher in the alcohol-dependent patients. HTR3A mRNA expression levels were positively correlated with OCDS scores. Moreover, HTR3A mRNA expression levels were positively correlated with acetylation levels of H3K9 in HTR3A promoter region. CONCLUSION: The current findings suggest that HTR3A mRNA expression levels were positively correlated with craving in Han Chinese alcohol-dependent patients. The regulation of H3K9 histone acetylation in HTR3A promoter region may offer a target for the treatment of alcohol dependence.
Asunto(s)
Alcoholismo/genética , Pueblo Asiatico/genética , Pueblo Asiatico/psicología , Ansia , Receptores de Serotonina 5-HT3/genética , Acetilación , Adulto , Estudios de Casos y Controles , Expresión Génica/genética , Humanos , Masculino , Persona de Mediana Edad , Regiones Promotoras GenéticasRESUMEN
The objective of this study is to detect the p66shc mRNA and protein expression of the peripheral blood monocytes (PBMs) in coronary heart disease patients (CHD) and controls, to evaluate the correlation between the expression of p66shc mRNA in the PBMs and endothelium-dependent vasodilatation. This study included 78 coronary angiography-documented CHD patients (CHD group) and 38 non-CHD controls (control group). The p66shc mRNA and protein levels were determined by quantitative real-time PCR and western blotting. The flow-mediated dilatation (FMD, endothelium-dependent), nitroglycerine-induced dilatation (NID, endothelium-independent) and carotid intimal medial thickness (CIMT) were detected using high-resolution ultrasound. The p66shc mRNA and the protein expression levels in the PBMs were significantly higher in the CHD group compared with the control group (p = 0.007 and 0.001). The FMD (p < 0.001) and NID (p = 0.013) were significantly lower and the CIMT (p = 0.007) was significantly thicker in the CHD patients than in the controls. In the univariate analysis, the expression of the p66shc mRNA in the PBMs was significantly positively correlated with the serum LDL-C and homocysteine levels and the CIMT and was inversely correlated with the FMD and the NID (all p < 0.001). In the multiple linear regression analysis, the FMD (p < 0.001), LDL-C (p = 0.002) and homocysteine levels (p = 0.002) remained independently correlated with the p66shc mRNA expression. These findings highlight a pivotal role for the expression of p66shc in CHD and endothelial dysfunction, which might represent a molecular target to prevent endothelial dysfunction-related disease.
Asunto(s)
Enfermedad de la Arteria Coronaria/genética , Endotelio Vascular/fisiopatología , Monocitos/metabolismo , Proteínas Adaptadoras de la Señalización Shc/genética , Vasodilatación/efectos de los fármacos , Anciano , Arteria Braquial/diagnóstico por imagen , Estudios de Casos y Controles , Femenino , Humanos , Modelos Lineales , Masculino , Persona de Mediana Edad , Análisis Multivariante , Nitroglicerina/uso terapéutico , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Riesgo , Proteína Transformadora 1 que Contiene Dominios de Homología 2 de Src , Túnica Íntima/diagnóstico por imagen , Ultrasonografía , Vasodilatadores/uso terapéuticoRESUMEN
Background: The calcium-binding protein 4 (CABP4) gene is a newly identified epilepsy-related gene that might be associated with a rare type of genetic focal epilepsy; that is, autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). In vitro, mutant CABP4 causes an increased inward flow voltage of calcium ions and a significant increase in the electrical signal discharge in hippocampus neurons; however, the role of CABP4 in epilepsy has not yet been specifically described, and there is not yet a CABP4 mutant animal model recapitulating the epilepsy phenotype. Methods: We introduced a human CABP4 missense mutation into the C57BL/6J mouse genome and generated a knock-in strain carrying a glycine-to-aspartic acid mutation in the gene. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot were performed to evaluate the CABP4 expression level. Slice patch-clamp recording was carried out on pyramidal cells of prefrontal cortex layers II and III. Results: The CABP4G155D/+ mutant mice were viable and born at an expected Mendelian ratio. Surprisingly, the heterozygous (HE) mice did not display either an abnormal appearance or an overt seizure phenotype, and there was no statistically significant difference between the HE and wild-type (WT) mice in terms of overall messenger RNA (mRNA) and protein expression. However, the HE mutant mice showed an imbalance in the amount of protein expressed in the brain regions. Additionally, the patch-clamp recordings from the HE mouse layer II/III cortical pyramidal cells revealed an increase in the frequency of micro-excitatory post-synaptic currents (mEPSCs) but no change in the amplitude was observed. Conclusions: The findings of this study suggest that the CABP4 p.G155D mutation might be one of the mechanisms underlying seizure onset.
RESUMEN
We develop and implement a compressive reconstruction method for tomographic recovery of refractive index distribution for weakly attenuating objects in a microfocus x-ray system. This is achieved through the development of a discretized operator modeling both the transport of intensity equation and the x-ray transform that is suitable for iterative reconstruction techniques.
RESUMEN
Genetic, epigenetic, and environmental factors influence the development of alcohol dependence (AD). Recent studies have shown that DNA methylation markers in peripheral blood may serve as risk markers for AD. Yet a genome-wide epigenomic approach investigating the role of DNA methylation in AD has yet to be performed. We conducted a population-based, case-control study of genome-wide DNA methylation to determine if alterations in gene-specific methylation were associated with AD in a Chinese population. Using the Illumina Infinium Human Methylation27 BeadChip, we assessed gene-specific methylation in over 27 000 CpG sites from DNA isolated from lymphocytes in 63 male AD in-patients and 65 male healthy controls. Using a multi-factorial statistical model, we observed differential methylation between cases and controls at multiple CpG sites with the majority of the methylated CpG sites being hypomethylated. Analyses with the online gene set analysis toolkit WebGestalt revealed that the genes of interest were enriched in multiple biological processes involved in AD development. Gene Ontology function annotation showed that stress, immune response and signal transduction were highly associated with AD. Further analysis by the Kyoto Encyclopedia of Genes and Genomes revealed associations with multiple pathways involved in metabolism through cytochrome P450, cytokine-cytokine receptor interaction and calcium signaling. Associations with canonical pathways previously shown to be involved in AD were also observed, such as dehydrogenases 1A (ADH1A), ADH7, aldehyde dehydrogenases 3B2 (ALDH3B2) and cytochrome P450 2A13. We present evidence that alterations in DNA methylation may be associated with AD, which is consistent with epigenetic theory.
Asunto(s)
Alcoholismo/genética , Islas de CpG , Metilación de ADN/genética , Epigenómica/estadística & datos numéricos , Estudio de Asociación del Genoma Completo , Modelos Estadísticos , Adulto , Alcoholismo/epidemiología , Estudios de Casos y Controles , China/epidemiología , Sistema Enzimático del Citocromo P-450/genética , Epigénesis Genética/efectos de los fármacos , Etanol/efectos adversos , Etanol/metabolismo , Sitios Genéticos , Marcadores Genéticos , Predisposición Genética a la Enfermedad/genética , Genoma Humano , Humanos , Inmunidad Innata/genética , Masculino , Análisis por Micromatrices/métodos , Persona de Mediana Edad , Receptores de Citocinas/genética , Transducción de Señal/genética , Estrés Psicológico/genéticaRESUMEN
Herein, imidazole acids grafted chitosan derivatives were synthesized, including HACC, HACC derivatives, TMC, TMC derivatives, amidated chitosan and amidated chitosan bearing imidazolium salts. The prepared chitosan derivatives were characterized by FT-IR and 1H NMR. The tests evaluated the biological antioxidant, antibacterial, and cytotoxic activities of chitosan derivatives. The antioxidant capacity (DPPH radical, superoxide anion radical and hydroxyl radical) of chitosan derivatives was 2.4-8.3 times higher than that of chitosan. The antibacterial capacity against E. coli and S. aureus of cationic derivatives (HACC derivatives, TMC derivatives, and amidated chitosan bearing imidazolium salts) was more active than only imidazole-chitosan (amidated chitosan). In particular, the inhibition effect of HACC derivatives on E. coli was 15.625 µg/mL. Moreover, the series of chitosan derivatives bearing imidazole acids showed certain activity against MCF-7 and A549 cells. The present results suggest that the chitosan derivatives in this paper seem to be promising carrier materials for use in drug delivery systems.
Asunto(s)
Antioxidantes , Quitosano , Antioxidantes/farmacología , Antioxidantes/química , Quitosano/química , Staphylococcus aureus , Espectroscopía Infrarroja por Transformada de Fourier , Escherichia coli , Sales (Química) , Superóxidos , Imidazoles/farmacología , Antibacterianos/farmacología , Antibacterianos/químicaRESUMEN
Xylo-oligosaccharides (XOS) are considered as a promising type of prebiotics that can be used in foods, feeds, and healthcare products. Xylanases play a key role in the production of XOS from xylan. In this study, we conducted a metagenomic analysis of the fecal microbiota from dairy cows fed with different types of fodders. Despite the diversity in their diets, the main phyla observed in all fecal microbiota were Firmicutes and Bacteroidetes. At the genus level, one group of dairy cows that were fed probiotic fermented herbal mixture-containing fodders displayed decreased abundance of Methanobrevibacter and increased growth of beneficial Akkermansia bacteria. Additionally, this group exhibited a high microbial richness and diversity. Through our analysis, we obtained a comprehensive dataset comprising over 280,000 carbohydrate-active enzyme genes. Among these, we identified a total of 163 potential xylanase genes and subsequently expressed 34 of them in Escherichia coli. Out of the 34 expressed genes, two alkaline xylanases with excellent temperature stability and pH tolerance were obtained. Notably, CDW-xyl-8 exhibited xylanase activity of 96.1 ± 7.5 U/mg protein, with an optimal working temperature of 55 â and optimal pH of 8.0. CDW-xyl-16 displayed an activity of 427.3 ± 9.1 U/mg protein with an optimal pH of 8.5 and an optimal temperature at 40 â. Bioinformatic analyses and structural modeling suggest that CDW-xyl-8 belongs to GH10 family xylanase, and CDW-xyl-16 is a GH11 family xylanase. Both enzymes have the ability to hydrolyze beechwood xylan and produce XOS. In conclusion, this metagenomic study provides valuable insights into the fecal microbiota composition of dairy cows fed different fodder types, revealing main microbial groups and demonstrating the abundance of xylanases. Furthermore, the characterization of two novel xylanases highlights their potential application in XOS production.
RESUMEN
Chinese herbal medicines (CHM) have been used to cure diseases for thousands of years. However, the bioactive ingredients of CHM are complex, and some CHM natural products cannot be directly absorbed by humans and animals. Moreover, the contents of most bioactive ingredients in CHM are low, and some natural products are toxic to humans and animals. Fermentation of CHM could enhance CHM bioactivities and decrease the potential toxicities. The compositions and functions of the microorganisms play essential roles in CHM fermentation, which can affect the fermentation metabolites and pharmaceutical activities of the final fermentation products. During CHM fermentation, probiotics not only increase the contents of bioactive natural products, but also are beneficial for the host gut microbiota and immune system. This review summarizes the advantages of fermentation of CHM using probiotics, fermentation techniques, probiotic strains, and future development for CHM fermentation. Cutting-edge microbiome and synthetic biology tools would harness microbial cell factories to produce large amounts of bioactive natural products derived from CHM with low-cost, which would help speed up modern CHM biomanufacturing.
RESUMEN
Objective: Alcohol dependence (AD) is a chronic recurrent mental disease caused by long-term drinking. It is one of the most prevalent public health problems. However, AD diagnosis lacks objective biomarkers. This study was aimed to shed some light on potential biomarkers of AD patients by investigating the serum metabolomics profiles of AD patients and the controls. Methods: Liquid chromatography-mass spectrometry (LC-MS) was used to detect the serum metabolites of 29 AD patients (AD) and 28 controls. Six samples were set aside as the validation set (Control: n = 3; AD group: n = 3), and the remaining were used as the training set (Control: n = 26; AD group: n = 25). Principal component analysis (PCA) and partial least squares discriminant analysis (PCA-DA) were performed to analyze the training set samples. The metabolic pathways were analyzed using the MetPA database. The signal pathways with pathway impact >0.2, value of p <0.05, and FDR < 0.05 were selected. From the screened pathways, the metabolites whose levels changed by at least 3-fold were screened. The metabolites with no numerical overlap in their concentrations in the AD and the control groups were screened out and verified with the validation set. Results: The serum metabolomic profiles of the control and the AD groups were significantly different. We identified six significantly altered metabolic signal pathways, including protein digestion and absorption; alanine, aspartate, and glutamate metabolism; arginine biosynthesis; linoleic acid metabolism; butanoate metabolism; and GABAergic synapse. In these six signal pathways, the levels of 28 metabolites were found to be significantly altered. Of these, the alterations of 11 metabolites changed by at least 3-fold compared to the control group. Of these 11 metabolites, those with no numerical overlap in their concentrations between the AD and the control groups were GABA, 4-hydroxybutanoic acid, L-glutamic acid, citric acid and L-glutamine. Conclusion: The metabolite profile of the AD group was significantly different from that of the control group. GABA, 4-hydroxybutanoic acid, L-glutamic acid, citric acid, and L-glutamine could be used as potential diagnostic markers for AD.