RESUMEN
Rice (Oryza sativa L.) is a staple food crop globally. Brown planthopper (Nilaparvata lugens Stål, BPH) is the most destructive insect that threatens rice production annually. More than 40 BPH resistance genes have been identified so far, which provide valuable gene resources for marker-assisted breeding against BPH. However, it is still urgent to evaluate rice germplasms and to explore more new wide-spectrum BPH resistance genes to combat newly occurring virulent BPH populations. To this end, 560 germplasm accessions were collected from the International Rice Research Institute (IRRI), and their resistance to current BPH population of China was examined. A total of 105 highly resistant materials were identified. Molecular screening of BPH resistance genes in these rice germplasms was conducted by developing specific functional molecular markers of eight cloned resistance genes. Twenty-three resistant germplasms were found to contain none of the 8 cloned BPH resistance genes. These accessions also exhibited a variety of resistance mechanisms as indicated by an improved insect weight gain (WG) method, suggesting the existence of new resistance genes. One new BPH resistance gene, Bph44(t), was identified in rice accession IRGC 15344 and preliminarily mapped to a 0-2 Mb region on chromosome 4. This study systematically sorted out the corresponding relationships between BPH resistance genes and germplasm resources using a functional molecular marker system. Newly explored resistant germplasms will provide valualble donors for the identification of new resistance genes and BPH resistance breeding programs. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01416-x.
RESUMEN
Rhamnolipid, as a low-toxic, biodegradable and environmentally friendly biosurfactant, has broad application prospects in many industries. However, the quantitative determination of rhamnolipid is still a challenging task. Here, a new sensitive method for the quantitative analysis of rhamnolipid based on a simple derivatization reaction was developed. In this study, 3-[3'-(l-rhamnopyranosyloxy) decanoyloxy] decanoic acid (Rha-C10-C10) and 3-[3'-(2'-O-α-l-rhamnopyranosyloxy) decanoyloxy] decanoic acid (Rha-Rha-C10-C10) were utilized as the representative rhamnolipids. Liquid chromatography-mass spectrometry and high-performance liquid chromatography-ultra violet results showed that these two compounds were successfully labeled with 1 N1-(4-nitrophenyl)-1,2-ethylenediamine. There was an excellent linear relationship between rhamnolipid concentration and peak area of labeled rhamnolipid. The detection limits of the Rha-C10-C10 and Rha-Rha-C10-C10 were 0.018 mg/L (36 nmol/L) and 0.014 mg/L (22 nmol/L), respectively. The established amidation method was suitable for the accurate analysis of rhamnolipids in the biotechnological process. The method had good reproducibility with the relative standard deviation of 0.96% and 0.79%, respectively, and sufficient accuracy with a recovery of 96%-100%. This method was applied to quantitative analysis of 10 rhamnolipid homologs metabolized by Pseudomonas aeruginosa LJ-8. The single labeling method was used for the quantitative analysis of multiple components, which provided an effective method for the quality evaluation of other glycolipids with carboxyl groups.
Asunto(s)
Biotecnología , Glucolípidos , Cromatografía Líquida de Alta Presión , Reproducibilidad de los Resultados , Glucolípidos/metabolismo , Pseudomonas aeruginosa , Tensoactivos/químicaRESUMEN
Most patients with VC have no symptoms, so they are often discovered due to male infertility. Early identification of them is a matter of concern for clinicians. A retrospective analysis of clinical data from patients between January 1, 2021, and February 1, 2024, was conducted. Patients were divided into VC and non-VC groups. Propensity score matching (PSM) was performed at a ratio of 1:1, and two cohorts with homogeneous baseline status were selected. Multivariate binary logistic regression and receiver operating characteristic (ROC) curve were used to analyze independent risk factors and protective factors and to evaluate their diagnostic value individually and in combination. A p-value <0.05 was considered statistically significant. A total of 256 patients with similar clinical characteristics were further analyzed after PSM in a 1:1 ratio of the 423 patients included in the study. The two groups had statistically significant differences in systemic immune-inflammation index (SII), neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR), and body mass index (BMI) (p<0.05). Multivariate binary logistic regression analysis showed that SII and NLR were independent risk factors for VC, while high BMI could reduce the prevalence of VC. The PLR differences were not significant. The ROC analysis showed that BMI, SII, and NLR could predict VC, with areas under the curve of 68.3% (cut-off value 22.32), 83.4% (cut-off value 357.57), and 83.2% (cut-off value 1.8), respectively. The combination of BMI and inflammatory factors was more accurate for predicting VC than BMI alone (87.5% vs. 68.3%, p=0.0001), SII (87.5% vs. 83.4%, p=0.0106), and NLR (87.5% vs 83.2%, p=0.0058). Both SII and NLR are independent risk factors for VC while BMI is an independent protective factor. The BMI, SII, and NLR values have the potential to predict VC. The BMI combined with these inflammatory factors can improve the accuracy of prediction.
RESUMEN
Lung metastatic breast cancer (LMBC) is mainly diagnosed through CT imaging and radiotherapy could be the most common method in the clinic to inhibit tumor proliferation. While the sensitivity of radiotherapy is always limited due to the hypoxic tumor microenvironment and high doses of irradiation easily induce systemic cytotoxicity. Metal-based materials applied as radiosensitizers have been widely investigated to improve efficiency and reduce the doses of irradiation. Herein, it is aimed to overcome these problems by designing biodegradable lipid-camouflaged bismuth-based nanoflowers (DP-BNFs) as both a photo-thermo-radiosensitizer to develop a novel photothermal therapy (PTT) and radiotherapy combination strategy for LMBC treatment. To achieve effective lung deposition, "Cluster Bomb" structure-based DP-BNFs nano-in-micro dry powder inhalation (DP-BNF@Lat-MPs) are formulated through spray-dried technology. The DP-BNFs "cluster" in the microsphere to improve their tumor-targeted lung deposition with a high fine particle fraction followed by burst releasing of DP-BNFs for targeting delivery and LMBC therapy. The DP-BNF@Lat-MPs exhibit excellent photothermal conversion efficiency, radiotherapy enhancement, and CT imaging ability in vitro, which synergistically inhibit cell proliferation and metastasis. In vitro and in vivo data prove that combining PTT and radiotherapy with DP-BNF@Lat-MPs as a thermo-radio dual-sensitizer significantly enhances LMBC tumor metastasis inhibition with good biocompatibility and low toxicity.
Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , Fármacos Sensibilizantes a Radiaciones , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Bismuto , Polvos , Administración por Inhalación , Neoplasias Pulmonares/tratamiento farmacológico , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Pulmón , Línea Celular Tumoral , Microambiente TumoralRESUMEN
At present, NIR-II-triggered photothermal biomedical applications are limited by complex synthesis reactions, mediocre photothermal conversion efficiency, and difficult degradation. Herein, we prepared biodegradable Bi flower-like nanoparticles (phospholipid-modified Bi nanoflowers, BNFs) with high photothermal conversion efficiency (â¼33.52 %) in NIR-II by a simple method and then modified them with the red blood cell membrane and dextran 40 (DRBCM) to improve their in vitro stability, to escape macrophages clearance and to enhance tumor accumulation. Dextran coating onto the surface of particles as a dispersant shell stabilizes inorganic particles by maintaining the surface charges and creating steric repulsions upon compression of neighboring polymer chains. In vitro and in vivo experiments proved that combined thermoradiotherapy of DRBCM-BNFs exhibited significantly enhanced tumor inhibition efficacy than monotherapy with good biocompatibility and low toxicity due to its biodegradability. Furthermore, the mechanism studies demonstrated that DRBCM-BNFs could serve as a nano sensitizer to promote the thermoradiotherapy under NIR-II illumination and X-ray irradiation, by downregulating heat shock protein 70 (HSP70) and phosphorylated-p65 (p-p65) to reduce the thermal resistance and radioresistance of tumor cells and increasing the expression of apoptosis-related protein cleaved caspase-3. In conclusion, DRBCM-BNFs could be a promising green delivery platform for the sensitization of synergistic thermoradiotherapy.
Asunto(s)
Nanopartículas , Neoplasias , Humanos , Dextranos , Bismuto/farmacología , Biomimética , Neoplasias/terapia , Macrófagos , Línea Celular TumoralRESUMEN
Lung metastatic breast cancer (LMBC) leads to a large number of deaths in women with breast cancer, and radiotherapy has been considered the common assay for tumour therapy except for surgery. However, radiotherapy still faces problems of low efficiency due to resistance and easily induced side effects. Here, the authors designed lipid-decorated bismuth-based nanoflowers (DP-BNFs) as both a radiosensitiser and a photothermal therapy agent for LMBC treatment. The BNFs were prepared by oxidation of bismuth nitrate and subsequent reduction using sodium borohydride. The preparation parameters and formulation of DP-BNFs were optimised via a single-factor experiment, with the factors including reaction temperature, a molar ratio of reducing agents, and the types and amount of decorated lipid materials. The result indicated that the BNFs prepared at 170°C with the Bi/NaBH4 ratio of 1:0.7 exhibited the best yield and particle size around 160 nm. After being spray dried with lactose to prepare dry powder inhalation (DP-BNF@Lat-MPs), their effects on improving therapeutic efficiency of the radiotherapy and photothermal therapy combination were measured using the western blot assay to determine the tumour apoptosis. In a word, DP-BNF@Lat-MPs could be a novel inhalable integrated microsphere that provides a new possibility for thermoradiotherapy of LMBC.
Asunto(s)
Neoplasias de la Mama , Neoplasias Pulmonares , Femenino , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Bismuto , Tamaño de la Partícula , Polvos , Neoplasias Pulmonares/tratamiento farmacológico , Pulmón , LípidosRESUMEN
Several studies have shown the positive clinical effect of brain computer interface (BCI) training for stroke rehabilitation. This study investigated the efficacy of the sensorimotor rhythm (SMR)-based BCI with audio-cue, motor observation and multisensory feedback for post-stroke rehabilitation. Furthermore, we discussed the interaction between training intensity and training duration in BCI training. Twenty-four stroke patients with severe upper limb (UL) motor deficits were randomly assigned to two groups: 2-week SMR-BCI training combined with conventional treatment (BCI Group, BG, n = 12) and 2-week conventional treatment without SMR-BCI intervention (Control Group, CG, n = 12). Motor function was measured using clinical measurement scales, including Fugl-Meyer Assessment-Upper Extremities (FMA-UE; primary outcome measure), Wolf Motor Functional Test (WMFT), and Modified Barthel Index (MBI), at baseline (Week 0), post-intervention (Week 2), and follow-up week (Week 4). EEG data from patients allocated to the BG was recorded at Week 0 and Week 2 and quantified by mu suppression means event-related desynchronization (ERD) in mu rhythm (8-12 Hz). All functional assessment scores (FMA-UE, WMFT, and MBI) significantly improved at Week 2 for both groups (p < 0.05). The BG had significantly higher FMA-UE and WMFT improvement at Week 4 compared to the CG. The mu suppression of bilateral hemisphere both had a positive trend with the motor function scores at Week 2. This study proposes a new effective SMR-BCI system and demonstrates that the SMR-BCI training with audio-cue, motor observation and multisensory feedback, together with conventional therapy may promote long-lasting UL motor improvement. Clinical Trial Registration: [http://www.chictr.org.cn], identifier [ChiCTR2000041119].
RESUMEN
In the era of cloud computing, the technique of access control is vital to protect the confidentiality and integrity of cloud data. From the perspective of servers, they should only allow authenticated clients to gain the access of data. Specifically, the server will share a communication channel with the client by generating a common session key. It is thus regarded as a symmetric key for encrypting data in the current channel. An access control mechanism using attribute-based encryptions is most flexible, since the decryption privilege can be granted to the ones who have sufficient attributes. In the paper, the authors propose a secure access control consisting of the attributed-based mutual authentication and the attribute-based encryption. The most appealing property of our system is that the attribute keys associated with each user is periodically updatable. Moreover, we will also show that our system fulfills the security of fuzzy selective-ID assuming the hardness of Decisional Modified Bilinear Diffie-Hellman (DMBDH) problem.
Asunto(s)
Algoritmos , Seguridad Computacional , Nube Computacional , Confidencialidad , HumanosRESUMEN
At present, some bacteria have developed significant resistance to almost all available antibiotics. One of the reasons that cannot be ignored is long-term exposure of bacteria to the sub-minimum inhibitory concentration (MIC) of antibiotics. Therefore, it is necessary to develop a targeted antibiotic delivery system to improve drug delivery behavior, in order to delay the generation of bacterial drug resistance. In recent years, with the continuous development of nanotechnology, various types of nanocarriers that respond to the infection microenvironment, targeting specific bacterial targets, and targeting infected cells, and so on, are gradually being used in the delivery of antibacterial agents to increase the concentration of drugs at the site of infection and reduce the side effects of drugs in normal tissues. Here, this article describes in detail the latest research progress on nanocarriers for antimicrobial, and commonly used targeted antimicrobial strategies. The advantages of the combination of nanotechnology and targeting strategies in combating bacterial infections are highlighted in this review, and the upcoming opportunities and remaining challenges in this field are rationally prospected.
Asunto(s)
Antiinfecciosos , Infecciones Bacterianas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Antiinfecciosos/uso terapéutico , Infecciones Bacterianas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Farmacorresistencia Bacteriana , HumanosRESUMEN
Fluorescent brighteners, illegally used to whitening wheat flour, are detrimental to people health. The aim was to establish a rapid and direct method to identify and quantify fluorescent whitening agent OB-1 (FWA OB-1) in wheat flour by using multi-molecular infrared (MM-IR) spectroscopy combined with stereomicroscopy. Characteristic peak profile of FWA OB-1 used as a judgment basis was spatially revealed by stereomicroscopy with group-peak matching of MM-IR at 1614 cm-1, 1501 cm-1 and 893 cm-1 and were further unveiled by the second derivative infrared spectroscopy (SD-IR) and its two-dimensional correlation infrared (SD-2DCOS IR) spectroscopy for higher resolution, and were validated by high-performance liquid chromatography (HPLC). Moreover, a quantitative prediction model based on IR spectra was established by partial least squares 1 (PLS1) (R2, 98.361; SEE, 5.032; SEP, 5.581). The developed method was applicable for rapid and direct analysis of FWA OB-1 (low to 10 ppm) in flour with relative standard deviation (RSD) of 5%. The capabilities of MM-IR with spectral qualitative and quantitative analysis would be applicable to direct identification and quantitation of fluorescent whitening agents or other IR-active compounds in powder objects.
Asunto(s)
Blanqueadores , Harina , Harina/análisis , Humanos , Análisis de los Mínimos Cuadrados , Espectrofotometría Infrarroja , TriticumRESUMEN
The formation and transformation mechanisms of micro-nano particles (MNPs) in broth during meat braising were systematically investigated through a sophisticated controlled process. Dynamic changes in the morphology, composition and spatial distribution of MNPs were comprehensively characterized, and subsequently the mechanisms were visually uncovered from microcosmic-spatial perspectives. MNPs formed as circular-shape colloidal systems with an aggrandizing tendency for particle number and size and gradually stabilize eventually. Specifically, the major MNPs gradually increased the size from <400 nm to ~1500 nm and accumulated triglycerides and glycoconjugates resulting from lipid oxidation, Maillard reaction, etc. Continuous formation of MNPs in broth progressively facilitated the spatial coalescence and self-assembly of free substances driven by intermolecular interactions, and consequently principal nutrients and flavor compounds further accumulated in the MNPs by the braising process. Hence, this work not only revealed the MNP formation and transformation mechanisms but offered a foundation for investigating MNP-dependent effect on broth flavor.
Asunto(s)
Manipulación de Alimentos/métodos , Carne/análisis , Nanopartículas/química , Coloides/química , Glicoconjugados/metabolismo , Peroxidación de Lípido , Tamaño de la Partícula , Triglicéridos/metabolismoRESUMEN
Direct exploration to differences between normal hair (NH) and alopecic hair (AH) at different degeneration stages is still lacking. To reveal compositional and structural variation of AH with reference to NH internally and externally, infrared spectroscopic imaging combined with scanning electron microscopy was applied to investigate integral changes of hair chemical profiles and surface texture structures, and infrared macro-fingerprinting analysis revealed detailed chemical compositions of NH and AH. Results showed that AH had excessive irregular laminated structures compared to NH, leading to a lower weight bearing capacity. Spatial distributions of lipids, phosphates, lipoproteins and phospholipids in hair transverse sections showed that their infrared absorptions were intensified and gradually centralized to medulla with average variable-areas increasing upto 2.3 folds (lipoproteins area changed from 13% in NH to 30% in AH)as the alopecia progressed. Extracted pixel spectra from the chemical images showed different fingerprint characteristics in 1075-1120 cm-1. Specifically, compared to NH, AH showed red shift of phosphate peaks, indicating the occurrence of phosphates transformation. In this study, in-situ visible and infrared chemical imaging directly revealed more irregular laminated scalps with decreasing weight bearing capacity and increasing distributive areas expanding to medulla of key components (phosphates, phospholipids, etc.) that were relevant to alopecia development from NH to AH, and offered a fast, eco-friendly and effective method for hair research.
Asunto(s)
Alopecia/diagnóstico por imagen , Cabello/fisiología , Cabello/ultraestructura , Lípidos/análisis , Lipoproteínas/análisis , Fosfatos/análisis , Espectrofotometría Infrarroja , Adulto , Humanos , Masculino , Microscopía Electrónica de Rastreo , Fosfolípidos/química , Análisis de Componente Principal , Cuero CabelludoRESUMEN
Hypoxia contributes to the maintenance of stem-like cells in glioblastoma (GBM), and activates vascular mimicry and tumor resistance to anti-angiogenesis treatments. The present study examined the expression patterns and biological significance of hypoxia-inducible protein 2 (HIG2, also known as HILPDA) in GBM. HIG2 was highly expressed in gliomas and was correlated with tumor grade, and high HIG2 expression independently predicted poor GBM patient prognosis. HIG2 was upregulated during hypoxia and by hypoxia mimics, and HIG2 knockdown in GBM cells inhibited cell proliferation and invasion. HIF1α bound to the HIG2 promoter and increased its expression in GBM cells, and HIG2 upregulated HIF1α expression. Reconstruction of a HIG2-related molecular network using bioinformatics methods revealed that HIG2 is closely correlated with angiogenesis genes, such as VEGFA, in GBM. HIG2 levels positively correlated with VEGFA in GBM samples. In addition, treatment of transplanted xenograft nude mice with bevacizumab (anti-angiogenesis therapy) resulted in HIG2 upregulation at late stages. We conclude that HIG2 is overexpressed in GBM and upregulated by hypoxia, and is a potential novel therapeutic target. HIG2 overexpression is an independent prognostic indicator and may promote tumor resistance to anti-angiogenesis treatments.