Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Development ; 141(13): 2611-20, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24924195

RESUMEN

The transition between the proliferation and differentiation of progenitor cells is a key step in organogenesis, and alterations in this process can lead to developmental disorders. The extracellular signal-regulated kinase 1/2 (ERK) signaling pathway is one of the most intensively studied signaling mechanisms that regulates both proliferation and differentiation. How a single molecule (e.g. ERK) can regulate two opposing cellular outcomes is still a mystery. Using both chick and mouse models, we shed light on the mechanism responsible for the switch from proliferation to differentiation of head muscle progenitors and implicate ERK subcellular localization. Manipulation of the fibroblast growth factor (FGF)-ERK signaling pathway in chick embryos in vitro and in vivo demonstrated that blockage of this pathway accelerated myogenic differentiation, whereas its activation diminished it. We next examined whether the spatial subcellular localization of ERK could act as a switch between proliferation (nuclear ERK) and differentiation (cytoplasmic ERK) of muscle progenitors. A myristoylated peptide that blocks importin 7-mediated ERK nuclear translocation induced robust myogenic differentiation of muscle progenitor/stem cells in both head and trunk. In the mouse, analysis of Sprouty mutant embryos revealed that increased ERK signaling suppressed both head and trunk myogenesis. Our findings, corroborated by mathematical modeling, suggest that ERK shuttling between the nucleus and the cytoplasm provides a switch-like transition between proliferation and differentiation of muscle progenitors.


Asunto(s)
Diferenciación Celular/fisiología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Desarrollo de Músculos/fisiología , Células Madre/fisiología , Transporte Activo de Núcleo Celular/fisiología , Animales , Bromodesoxiuridina , Proliferación Celular , Embrión de Pollo , Cartilla de ADN/genética , Técnica del Anticuerpo Fluorescente , Ratones , Ratones Transgénicos , Modelos Biológicos , Reacción en Cadena en Tiempo Real de la Polimerasa
2.
Cell Rep ; 14(7): 1602-1610, 2016 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-26876167

RESUMEN

Mitochondrial carrier homolog 2 (MTCH2) is a repressor of mitochondrial oxidative phosphorylation (OXPHOS), and its locus is associated with increased BMI in humans. Here, we demonstrate that mice deficient in muscle MTCH2 are protected from diet-induced obesity and hyperinsulinemia and that they demonstrate increased energy expenditure. Deletion of muscle MTCH2 also increases mitochondrial OXPHOS and mass, triggers conversion from glycolytic to oxidative fibers, increases capacity for endurance exercise, and increases heart function. Moreover, metabolic profiling of mice deficient in muscle MTCH2 reveals a preference for carbohydrate utilization and an increase in mitochondria and glycolytic flux in muscles. Thus, MTCH2 is a critical player in muscle biology, modulating metabolism and mitochondria mass as well as impacting whole-body energy homeostasis.


Asunto(s)
Metaboloma/genética , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/genética , Músculo Esquelético/metabolismo , Obesidad/genética , Animales , Composición Corporal , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Metabolismo Energético , Expresión Génica , Glucólisis/genética , Humanos , Masculino , Ratones , Ratones Noqueados , Mitocondrias/patología , Proteínas de Transporte de Membrana Mitocondrial/deficiencia , Músculo Esquelético/patología , Obesidad/etiología , Obesidad/metabolismo , Obesidad/patología , Fosforilación Oxidativa , Condicionamiento Físico Animal
3.
Curr Top Dev Biol ; 115: 3-30, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26589919

RESUMEN

The developmental mechanisms that control head muscle formation are distinct from those that operate in the trunk. Head and neck muscles derive from various mesoderm populations in the embryo and are regulated by distinct transcription factors and signaling molecules. Throughout the last decade, developmental, and lineage studies in vertebrates and invertebrates have revealed the peculiar nature of the pharyngeal mesoderm that forms certain head muscles and parts of the heart. Studies in chordates, the ancestors of vertebrates, revealed an evolutionarily conserved cardiopharyngeal field that progressively facilitates the development of both heart and craniofacial structures during vertebrate evolution. This ancient regulatory circuitry preceded and facilitated the emergence of myogenic cell types and hierarchies that exist in vertebrates. This chapter summarizes studies related to the origins, signaling circuits, genetics, and evolution of the head musculature, highlighting its heterogeneous characteristics in all these aspects, with a special focus on the FGF-ERK pathway. Additionally, we address the processes of head muscle regeneration, and the development of stem cell-based therapies for treatment of muscle disorders.


Asunto(s)
Corazón/embriología , Mesodermo/embriología , Desarrollo de Músculos , Cráneo/embriología , Animales , Regulación del Desarrollo de la Expresión Génica , Humanos , Mesodermo/citología , Mesodermo/metabolismo , Modelos Biológicos , Miocardio/citología , Miocardio/metabolismo , Transducción de Señal/genética , Cráneo/metabolismo
4.
Biol Open ; 3(8): 679-88, 2014 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-24996922

RESUMEN

Cardiac and craniofacial developmental programs are intricately linked during early embryogenesis, which is also reflected by a high frequency of birth defects affecting both regions. The molecular nature of the crosstalk between mesoderm and neural crest progenitors and the involvement of endothelial cells within the cardio-craniofacial field are largely unclear. Here we show in the mouse that genetic ablation of vascular endothelial growth factor receptor 2 (Flk1) in the mesoderm results in early embryonic lethality, severe deformation of the cardio-craniofacial field, lack of endothelial cells and a poorly formed vascular system. We provide evidence that endothelial cells are required for migration and survival of cranial neural crest cells and consequently for the deployment of second heart field progenitors into the cardiac outflow tract. Insights into the molecular mechanisms reveal marked reduction in Transforming growth factor beta 1 (Tgfb1) along with changes in the extracellular matrix (ECM) composition. Our collective findings in both mouse and avian models suggest that endothelial cells coordinate cardio-craniofacial morphogenesis, in part via a conserved signaling circuit regulating ECM remodeling by Tgfb1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA